KENDRIYA VIDYALAYA SANGATHAN

AHMEDABAD REGION

WITH THE GUIDANCE OF HONOURABLE

DEPUTY COMMISSIONER DR. JAIDEEP DAS PREPARED BY

S. UMAMAHESWARI

PGT(MATHEMATICS)
KV ONGC CHANDKHEDA

KENDRIYA YIDYALAYA ONGC CHANDKHEDA
 (AHMEDABAD CLUSTER)
 SUPPORT MATERIAL
 CLASS: X SESSION 2020-21

COURSE STRUCTURE
MATHEMATICS (CLASS-X)

UNITS	UNIT NAME	MARKS
I.	NUMBER SYSTEMS	06
II.	ALGEBRA	20
III.	COORDINATE GEOMETRY	06
IV.	GEOMETRY	15
V.	TRIGONOMETRY	12
VI.	MENSURATION	10
VII.	STATISTICS \& PROBABILITY	11
	TOTAL	80

DELETED SYLLAABUS

CHAPTER	TOPICS REMOVED
UNIT I-NUMBER SYSTEMS	Euclid's division lemma
REAL NUMBERS	Statement and simple problems on division algorithm for polynomials with real coefficients.
UNIT II-ALGEBRA	cross multiplication method
POLYNOMIALS	Situational problems based on equations reducible to quadratic equations
PAIR OF LINEAR EQUATIONS IN TWO VARIABLES	Application in solving daily life problems based on sum to n terms
QUADRATIC EQUATIONS	
ARITHMETIC PROGRESSIONS	
UNIT III-COORDINATE GEOMETRY	
COORDINATE GEOMETRY	Area of a triangle.

UNIT IV-GEOMETRY		
TRIANGLES	Proof of the following theorems are deleted The ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides. In a triangle, if the square on one side is equal to sum of the squares on the other two sides, the angle opposite to the first side is a right angle.	
CIRCLES	No deletion	
CONSTRUCTIONS	Construction of a triangle similar to a given triangle.	
UNIT V- TRIGONOMETRY		
INTRODUCTION TO TRIGONOMETRY	TRIGOtivate the ratios whichever are defined at 0° and 90°	
TRIGONOMETRIC IDENTITIES	Trigonometric ratios of complementary angles.	
UNIT VI-MENSURATION	No deletion	
AREAS RELATED TO CIRCLES	\square Problems on central angle of 120°	

$\|l\|$	
UNIT VI-MENSURATION	
AREAS RELATED TO CIRCLES	\square Problems on central angle of 120°
SURFACE AREAS AND VOLUMES	\square Frustum of a cone.
UNIT VI-STATISTICS \& PROBABILITY	
STATISTICS	\square Step deviation Method for finding the mean Cumulative Frequency graph
PROBABILITY	No deletion

NOTES ON THE CHAPTERS

CHAPTER 1

R = Real Numbers:

All rational and irrational numbers are called real numbers.

I = Integers:
All numbers from (...-3, $-2,-1,0,1,2,3 \ldots)$ are called integers.

Q = Rational Numbers:

Real numbers of the form $\frac{p}{q}, q \neq 0, p, q \in \mid$ are rational numbers.

- All integers can be expressed as rational, for example, $5=\frac{5}{1}$
- Decimal expansion of rational numbers terminating or non-terminating recurring.
$Q^{\prime}=$ Irrational Numbers:
Real numbers which cannot be expressed in the form $\frac{p}{q}$ and whose decimal expansions are nonterminating and non-recurring.
- Roots of primes like $\sqrt{ } 2, \sqrt{ } 3, \sqrt{5}$ etc. are irrational

$\mathrm{N}=$ Natural Numbers:

Counting numbers are called natural numbers. $N=\{1,2,3, \ldots\}$

W = Whole Numbers:

Zero along with all natural numbers are together called whole numbers. $\{0,1,2,3, \ldots\}$

Even Numbers:

Natural numbers of the form $2 n$ are called even numbers. $(2,4,6, \ldots\}$

Odd Numbers:

Natural numbers of the form $2 \mathrm{n}-1$ are called odd numbers. $\{1,3,5, \ldots\}$

- Why can't we write the form as $2 n+1$?

Remember this!

- All Natural Numbers are whole numbers.
- All Whole Numbers are Integers.
- All Integers are Rational Numbers.
- All Rational Numbers are Real Numbers.

Prime Numbers:

The natural numbers greater than 1 which are divisible by 1 and the number itself are called prime numbers, Prime numbers have two factors i.e., 1 and the number itself For example, 2, 3, 5, 7 \& 11 etc.

- 1 is not a prime number as it has only one factor.

Composite Numbers:

The natural numbers which are divisible by 1 , itself and any other number or numbers are called composite numbers. For example, 4, 6, 8, 9, 10 etc.
Note: 1 is neither prime nor a composite number.

1. Algorithm to locate HCF and LCM of two or more positive integers:

Step l:

Factorize each of the given positive integers and express them as a product of powers of primes in ascending order of magnitude of primes.

Step II:

To find HCF, identify common prime factor and find the least powers and mutiply them to get HCF.

Step III:

To find LCM, find the greatest exponent and then multiply them to get the LCM.

2. To prove Inationality of numbers:

- The sumor differenceof a ational and an irational numberis irational.

3. To determine the nature of the decimal expansion of rational numbers:

- Let $x=p / q, p$ and q are co-primes, be a rational number whose decimal expansion terminates. Then the prime factorization of q^{\prime} is of the form $2^{m} 5^{n}$, m and n are non-negative integers.
- Let $x=p / q$ be a rational number such that the prime factorization of' q ' is not of the form $2^{m 5 n}$ ' ' m ' and 'n' being non-negative integers, then x has a non-terminating repeating decimal expansion.

CHAPTER 2

- "Polynomial" comes from the word 'Poly' (Meaning Many) and 'nomial' (in this case meaning Term)-so it means many terms.
- A polynomial is made up of terms that are only added, subtracted or multiplied.
- A quadratic polynomial in x with real coeficients is of the form $a x^{2}+b x+c$, where a, b, c are real numbers with a $\neq 0$.
- Degree - The highest exponent of the variable in the polynomial is called the degree of polynomial. Example: $3 x^{3}+4$, here degree $=3$.
- Polynomials of degrees 1,2 and 3 are called linear, quadratic and cubic polynomial respectively.
- A polynomial can have terms which have Constants like $3,-20$, etc., Variables like x and y and Exponents like 2 in y^{2}.
- These can be combined using addition, subtraction and multiplication but NOT DIVISION.
- The zeroes of a polynomial $p(x)$ are precisely the x-coordinates of the points, where the graph of $y=$ $p(x)$ intersects the x-axis.

$$
\begin{aligned}
& \text { If } \alpha \text { and } \beta \text { are the zeroes of the quadratic polynomial } a x^{2}+b x+c \text {, then } \\
& \text { sum of zeros, } \alpha+\beta=\frac{-b}{a}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{2}} \\
& \text { product of zeros, } \alpha \beta=\frac{c}{a}=\frac{\text { costant term }}{\text { coefficient of } x^{2}}
\end{aligned}
$$

If α, β, y are the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d=0$, then
$\alpha+\beta+\gamma=\frac{-b}{a}=\frac{\text { coefficient of } x^{2}}{\text { coefficient of } x^{3}}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{3}}$
$\alpha \beta \gamma=\frac{-d}{a}=\frac{- \text { constant } \quad \text { term }}{\text { coefficient } \text { of } x^{3}}$

Zeroes (α, β, y) follow the rules of algebraic identities, i.e., $(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 a \beta$
 $\therefore\left(\alpha^{2}+\beta^{2}\right)=(\alpha+\beta)^{2}-2 \alpha \beta$

CHAPTER 3

- For any linear equation, each solution (x, y) corresponds to a point on the line. General form is given b b $a x+b y+c=0$.
- The graph of a linear equation is a straight line.
- Two linear equations in the same two variables are called a pair of linear equations in two variables. The most general form of a pair of linear equations is: $a_{1} x+b_{1} y+c_{1}=0 ; a_{2} x+b_{2} y+c_{2}=0$ where $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}$ and c_{2} are real numbers, such that $a_{1}{ }^{2}+b_{1}{ }^{2} \neq 0, a_{2}{ }^{2}+b_{2}{ }^{2} \neq 0$.
- A pair of values of variables ' x ' and ' y ' which satisfy both the equations in the given system of equations is said to be a solution of the simultaneous pair of linear equations.
- A pair of linear equations in two variables can be represented and solved, by
(i) Graphical method
(ii) Algebraic method
(i) Graphical method. The graph of a pair of linear equations in two variables is presented by two lines.
(ii) Algebraic methods. Following are the methods for finding the solutions(s) of a pair of linear equations:

1. Substitution method
2. Elimination method

- There are several situations which can be mathematically represented by two equations that are not linear to start with. But we allow them so that they are reduced to a pair of linear equations.
- Consistent system. A system of linear equations is said to be consistent if it has at least one solution
- Inconsistent system. A system of linear equations is said to be inconsistent if it has no solution.

CONDITIONS FOR CONSISTENCY

Let the two equations be:

```
a}\mp@subsup{a}{1}{}x+\mp@subsup{b}{1}{}y+\mp@subsup{c}{1}{}=
a}\mp@subsup{a}{2}{}x+\mp@subsup{b}{2}{}y+\mp@subsup{c}{2}{}=
```

Then,

Relationship between

coeff. or the pair of \quad Graph
equations

Number of Solutions
Consistency of System

| $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ | Intersecting lines \quad Unique solution \quad Consistent |
| :--- | :--- | :--- |

$$
\begin{array}{llll|}
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} & \text { Parallel lines } & \text { No solution } & \text { Inconsistent } \\
\hline \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} & \text { Co-incident lines } & \text { Infinite solutions } & \text { Consistent } \\
\hline
\end{array}
$$

CHAPTER 4

A quadratic polynomial of the form $a x^{2}+b x+c$, where $a \neq 0$ and a, b, c are real numbers, is called a quadratic equation
when $a x^{2}+b x+c=0$.
Here a and b are the coefficients of x^{2} and x respectively and ' c^{\prime} is a constant term.

Any value is a solution of a quadratic equation if and only if it satisfies the quadratic equation.

Quadratic formula: The roots, i.e, α and β of a quadratic equation $a x^{2}+b x+c=0$ are given by $\frac{-b \pm \sqrt{D}}{2 a}$ or $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ provided $b^{2}-4 a c \geq 0$.

Here, the value $b^{2}-4 a c$ is known as the discriminant and is generally denoted by D. ' D ' helps us to determine the nature of roots for a given quadratic equation. Thus $D=b^{2}-4 a c$.

The rules are:

1. If $D=0 \Rightarrow$ The roots are Real and Equal.
2. If $D>0 \Rightarrow$ The two roots are Real and Unequal.
3. If $D<0 \Rightarrow$ No Real roots exist.

If a and β are the roots of the quadratic equation, then Quadratic equation is $x^{2}-(a+\beta) x+a \beta=00 r x^{2}-$ (sum of roots) $x+$ product of roots $=0$
where, Sum of roots $(a+\beta)=\frac{- \text { coefficient of } x}{\text { coefficient of } x^{2}}=\frac{-b}{a}$
Product of roots $(\alpha \times \beta)=\frac{\text { coefficient term }}{\text { coefficient of } x^{2}}=\frac{c}{a}$

CHAPTER 5

SEQUENCE:

A sequence is an arrangement of numbers in a definite order and according to some rule.
Example: $1,3,5,7,9, \ldots$ is a sequence where each successive item is 2 greater than the preceding term and 1 , $4,9,16,25$,... is a sequence where each term is the square of successive natural numbers.

TERMS:

The various numbers occurring in a sequence are called 'terms'. Since the order of a sequence is fixed, therefore the terms are known by the position they occupy in the sequence.
Example: If the sequence is defined as

ARITHMETIC PROGRESSION (A.P.):

An Arithmetic progression is a special case of a sequence, where the difference between a term and its preceding term is always constant, known as common difference, i.e., d. The arithmetic progression is abbreviated as A.P

The general form of an A.P. is
$\therefore \mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \ldots$ For example, $1,9,11,13 \ldots$, Here the common difference is 2 . Hence it is an A.P

In an A.P. with first term a and common difference d, the nth term (or the general term) is given by
$a_{n}=a+(n-1) d$.
... where $[\mathrm{a}=$ first term, $\mathrm{d}=$ common difference, $\mathrm{n}=$ term number
Example: To find seventh term put $n=7$
$\therefore a_{7}=a+(7-1) d$ or $a_{7}=a+6 d$

The sum of the first n terms of an A.P. is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$ or $\frac{n}{2}[a+1]$
where, 1 is the last term of the finite $A P$

If a, b, c are in A.F. then $b=\frac{a+c}{2}$ and b is called the arithmetic mean of a and c.

CHAPTER 6

SIMILAR FIGURES

- Two figures having the same shape but not necessary the same size are called similar figures
- All congruent figures are similar but all similar figures are not congruent.

SIMILAR POLYGONS

Two polygons are said to be similar to each other, if:
(i) their corresponding angles are equal, and
(ii) the lengths of their corresponding sides are proportional

Example:

Any two line segments are similar since length are proportional

$$
I_{1}
$$

\qquad

Any two circles are similar since radii are proportional

Any two squares are similar since corresponding angles are equal and lengths are proportional.

Note:

Similar figures are congruent if there is one to one correspondence between the figures.
\therefore From above we deduce:
Any two triangles are similar, if their

(i) Corresponding angles are equal
$\angle A=\angle P$
$\angle B=\angle Q$
$\angle C=\angle R$
(ii) Corresponding sides are proportional

$$
\frac{A B}{P Q}=\frac{A C}{P R}=\frac{B C}{Q R}
$$

THALES THEOREM OR BASIC PROPORTIONALITY THEORY

Theorem 1:
State and prove Thales' Theorem.

CRITERION FOR SIMILARITY OF TRIANGLES

Two triangles are similar if either of the following three criterion's are satisfied:

- AAA similarity Criterion. If two triangles are equiangular, then they are similar.
- Corollary(AA similarity). If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.
- SSS Similarity Criterion. If the corresponding sides of two triangles are proportional, then they are similar.
- SAS Similarity Criterion. If in two triangles, one pair of corresponding sides are proportional and the included angles are equal, then the two triangles are similar.

AREA OF SIMILAR TRIANGLES

Theorem 2.

The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Results based on Area Theorem:

1. Ratio of areas of two similar triangles $=$ Ratio of squares of corresponding altitudes
2. Ratio of areas of two similar triangles $=$ Ratio of squares of corresponding medians
3. Ratio of areas of two similar triangles = Ratio of squares of corresponding angle bisector segments.

Note:
If the areas of two similar triangles are equal, the triangles are congruent.

PYTHAGORAS THEOREM

Theorem 3:
State and prove Pythagoras' Theorem.

CHAPTER 7

- Position of a point P in the Cartesian plane with respect to co-ordinate axes is represented by the ordered pair (x, y).

- The line X'OX is called the X-axis and YOY' is called the Y-axis.
- The part of intersection of the X -axis and Y -axis is called the origin O and the co-ordinates of O are (O , 0).
- The perpendicular distance of a point P from the Y-axis is the ' x ' co-ordinate and is called the abscissa.
- The perpendicular distance of a point P from the X-axis is the ' y ' co-ordinate and is called the ordinate.
- Signs of abscissa and ordinate in different quadrants are as given in the diagram:

- Any point on the X-axis is of the form $(x, 0)$.
- Any point on the Y-axis is of the form $(0, y)$.
- The distance between two points $P(x 1, y 1)$ and $Q(x 2, y 2)$ is given by

$$
\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Note. If 0 is the origin, the distance of a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from the origin $0(0,0)$ is given by $\mathrm{OP}=\sqrt{x^{2}+y^{2}}$

Section formula. The coordinates of the point which divides the line segment joining the points $A(x 1, y 1)$ and $B(x 2, y 2)$ internally in the ratio m : n are:

$$
P(x, y)=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)
$$

The above formula is section formula. The ratio m : n can also be written as $\frac{m}{n}: 1$ or $k: 1$, The co-ordinates of P can also be written as $\mathrm{P}(\mathrm{x}, \mathrm{y})=\frac{k x_{2}+x_{1}}{k+1}, \frac{k y_{2}+y_{1}}{k+1}$

The mid-point of the line segment joining the points $P(x 1, y 1)$ and $Q(x 2, y 2)$ is

$A(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Herem: $\mathrm{n}=1: 1$.

CHAPTER 8

- Position of a point P in the Cartesian plane with respect to co-ordinate axes is represented by the ordered pair (x, y).
- Trigonometry is the science of relationships between the sides and angles of a right-angled triangle.
- Trigonometric Ratios: Ratios of sides of right triangle are called trigonometric ratios.

Consider triangle $A B C$ right-angled at B. These ratios are always defined with respect to acute angle ' A ' or angle 'C.

- If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of an angle can be easily determined.
- How to identify sides: Identify the angle with respect to which the t-ratios have to be calculated. Sides are always labelled with respect to the ' θ ' being considered.

In a right triangle $A B C$, right-angled at B. Once we have identified the sides, we can define six t-Ratios with respect to the sides.
(i) sine $A=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{B C}{A C}$
(i) sine $\mathrm{C}=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{A B}{A C}$
(ii) cosine $\mathrm{A}=\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{A C}$
(ii) cosine $\mathrm{C}=\frac{\text { base }}{\text { hypotenuse }}=\frac{B C}{A C}$
(iii) tangent $\mathrm{A}=\frac{\text { perpendicular }}{\text { base }}=\frac{B C}{A B}$
(iii) tangent $\mathrm{C}=\frac{\text { perpendicular }}{\text { base }}=\frac{A B}{B C}$
(iv) cosecant $A=\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{A C}{B C}$
(iv) cosecant $\mathrm{C}=\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{A C}{A B}$
(v) secant $\mathrm{A}=\frac{\text { hypotenuse }}{\text { base }}=\frac{A C}{A B}$
(v) secant $C=\frac{\text { hypotenuse }}{\text { base }}=\frac{A C}{B C}$
(v) cotangent $\mathrm{A}=\frac{\text { base }}{\text { perpendicular }}=\frac{A B}{B C}$
(v) cotangent $C=\frac{\text { base }}{\text { perpendicular }}=\frac{B C}{A B}$

TRIGONOMETRIC IDENTITIES

An equation involving trigonometric ratio of angle(s) is called a trigonometric identity, if it is true for all values of the angles involved. These are:
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$

- $\sin ^{2} \theta+\cos ^{2} \theta=1 \Rightarrow \sin ^{2} \theta=1-\cos ^{2} \theta \Rightarrow \cos ^{2} \theta=1-\sin ^{2} \theta$
- $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1 \Rightarrow \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta \Rightarrow \cot ^{2} \theta=\operatorname{cosec}^{2} \theta-1$
- $\sec ^{2} \theta-\tan ^{2} \theta=1 \Rightarrow \sec ^{2} \theta=1+\tan ^{2} \theta \Rightarrow \tan ^{2} \theta=\sec ^{2} \theta-1$
- $\sin \theta \operatorname{cosec} \theta=1 \Rightarrow \cos \theta \sec \theta=1 \Rightarrow \tan \theta \cot \theta=1$

MOTIVATION...

Value of t-ratios of specified angles:

$\angle A$	0°	30°	45°	60°	90°
$\sin A$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos A$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan A$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} A$	not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec A$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	not defined
$\cot A$	not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

CHAPTER 9

Line of Sight

When an observer looks from a point E (eye) at an object O then the straight line E) between the eye E and the object 0 is called the line of sight.

Horizontal

When an observer looks from a point E (eye) to another point Q which is horizontal to E , then the straight line, EQ between E and Q is called the horizontal line.

Angle of Elevation

When the eye is below the object, then the observer has to look up from the point E to the object 0 . The measure of this rotation (angle θ) from the horizontal line is called the angle of elevation.

Angle of Depression

When the eye is above the object, then the observer has to look down from the point E to the object. The horizontal line is now parallel to the ground. The measure of this rotation (angle θ) from the horizontal line is called the angle of depression.

- Choose a trigonometric ratio in such a way that it considers the known side and the side that you wish to calculate.
- The eye is always considered at ground level unless the problem specifically gives the height of the observer.

CHAPTER 10

Centre: The fixed point is called the centre.

Radius: The constant distance from the centre is called the radius.

Chord: A line segment joining any two points on a circle is called a chord.

Diameter: A chord passing through the centre of the circle is called diameter. It is the longest chord.

Tangent: When a line meets the circle at one point or two coincidings The line is known as points, a tangent. The tangent to a circle is perpendicular to the radius through the point of contact.
$\Rightarrow \mathrm{OP} \perp \mathrm{AB}$

[^0]

Length of Tangent Segment
$P B$ and PA are normally called the lengths of tangents from outside point P.

Properties of Tangent to Circle

Theorem 1: Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

Theorem 2: A line drawn through the end point of a radius and perpendicular to it, is the tangent to the circle.

Theovem 3: Prove that the enģifs of tangentis drawn from an external pointto a circle ace equal

Note: If two tangents are drawn to a circle from an external point, then:

- They subtend equal angles at the centre i.e., $\angle 1=\angle 2$.
- They are equally inclined to the segment joining the centre to that point i.e., $\angle 3=\angle 4$. $\angle O A P=\angle O A Q$

CHAPTER 11

Determining a Point Dividing a given Line Segment, Internally in the given Ratio M : N

Construction of a Tangent at a Point on a Circle to the Circle when its Centre is Known

If the centre of the circle is not known, then we first find the centre of the circle by drawing two non-paralle| chords of the circle. The point of intersection of perpendicular bisectors of these chords gives the centre of the circle. Then we can proceed as above.

Construction of a Tangents from an External Point to a Circle when its Centre is Known

Construction of a Tangents from an External Point to a Circle when its Centre is not Known

If the centre of the circle is not known, then we first find the centre of the circle by drawing two non-parallel chords of a circle. The point of intersection of perpendicular bisectors of the chords gives the centre of the circle. Then we can proceed as above.

Construction of a Triangle Similar to a given Triangle as per given Scale Factor $\frac{m}{n}, \mathrm{~m}<\mathrm{n}$.

CHAPTER 12

Circumference of a circle $=2 \pi r$
Area of a circle $=\pi r^{2}$...[where r is the radius of a circle]
Area of a semi-circle $=\frac{\pi r^{2}}{2}$
Area of a circular path or ring:

Let ' R ' and ' r ' he radii of two circles
Then area of shaded part $=\pi R^{2}-\pi r^{2}=\pi\left(R^{2}-r^{2}\right)=\pi(R+r)(R-r)$

Minor arc and Major Arc: An arc length is called a major arc if the arc length enclosed by the two radii is greater than a semi-circle.

Minor Arc

Major Arc

If the arc subtends angle ' θ ' at the centre, then the
Length of minor arc $=\frac{\theta}{360} \times 2 \pi r=\frac{\theta}{180} \times \pi r$
Length of major arc $=\left(\frac{360-\theta}{360}\right) \times 2 \pi r$

Sector of a Circle and its Area

A region of a circle is enclosed by any two radii and the arc intercepted between two radii is called the sector of a circle.
(i) A sector is called a minor sector if the minor arc of the circle is part of its boundary.
$O \hat{A} B$ is minor sector.

Area of minor sector $=\frac{\theta}{360}\left(\pi r^{2}\right)$
Perimeter of minor sector $=2 r+\frac{\theta}{360}(2 \pi r)$
(ii) A sector is called a major sector if the major arc of the circle is part of its boundary.
$\hat{O A C B}$ is major sector
Area of major sector $=\left(\frac{360-\theta}{360}\right)\left(\pi r^{2}\right)$
Perimeter of major sector $=2 r+\left(\frac{360-\theta}{360}\right)(2 \pi r)$

Minor Segment: The region enclosed by an arc and a chord is called a segment of the circle. The region enclosed by the chord PQ \& minor arc PRQ is called the minor segment.

Area of Minor segment = Area of the corresponding sector - Area of the corresponding triangle
$=\left[\frac{\theta}{360} \pi r^{2}-\frac{1}{2} r^{2} \sin \theta\right]$
$=\frac{1}{2} r^{2}\left[\frac{\theta}{180} \pi-\sin \theta\right]$ or $\frac{1}{2} r^{2}\left[\frac{\theta}{180} \pi-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right]$

Major Segment: The region enclosed by the chord PQ \& major arc PSQ is called the major segment. Area of major segment = Area of a circle - Area of the minor segment
Area of major sector + Area of triangle
$=\pi r^{2}-\frac{\theta}{360} \pi r^{2}+\frac{1}{2} r^{2} \sin \theta=r^{2}\left[\pi-\frac{\theta}{360} \pi+\frac{\sin \theta}{2}\right]$

TABLE FOR SURFACE AREA AND VOLUME

Solid	Figures	Curved surface area (1)	Plane area (2)	Total area $[1+2]$	Volume	Remarks
Cuboid		Also known as lateral surface area $=2(l h+b h)$	Area of: Top face $=l b$ Bottom face $=l b$ $\therefore l b+l b=2 l b$	$2(l b+b h+h l)$	l.b.h	$l:$ length b : breadth h : height
Cube		Lateral surface area $=4 a^{2}$	Area of: Top face $=a^{2}$ Bottom face $=a^{2}$ $\therefore a^{2}+a^{2}=2 a^{2}$	$4 a^{2}+2 a^{2}=6 a^{2}$	a^{3}	a : Side of cube
Right circular cylinder closed at top		Curved surface area $=2 \pi c h$	$\begin{array}{\|l\|} \hline \text { Area of: } \\ \text { Top face }=\pi r^{2} \\ \text { Bottom face }=\pi r^{2} \\ \therefore \pi r^{2}+\pi r^{2}=2 \pi r^{2} \end{array}$	$\begin{aligned} & 2 \pi r^{2}+2 \pi r h \\ & O r, \\ & 2 \pi r(r+h) \end{aligned}$	$\pi r^{2} h$	r : radius h : height of cylinder
Right circular cylinder open at top		Curved surface area $=2 \pi \mathrm{~m}$	Area of: Top face $=0$ Bottom face $=\pi r^{2}$ $\therefore 0+\pi r^{2}=\pi r^{2}$	$\begin{gathered} 2 \pi r h+\pi r^{2} \\ O r, \\ \pi r(2 h+r) \end{gathered}$	$\pi r^{2} h$	r : radius h : height of cylinder
Hollow cylinder (Pipe)		$2 \pi R h$ - External surface area $=2 \pi R h$ - Intemal surface area $=2 \pi r h$	Area of: Top face $=\pi\left(R^{2}-r^{2}\right)$ Bottom face $=\pi\left(R^{2}-r^{2}\right)$	$\begin{aligned} & 2 \pi R h+2 \pi r h+ \\ & 2 \pi\left(R^{2}-r^{2}\right) \end{aligned}$	$\pi R^{2} h$ $\pi r^{2} h$ (External Vol. - Internal Vol.)	R : Radius of outer base r : radius of inner base $h=h e i g h t$
Cone		$\pi r l$	Area of: Bottom Face $=\pi r^{2}$	$\begin{aligned} & \pi r^{2}+\pi r l \\ & O r, \pi r(r+l) \end{aligned}$	$\frac{1}{3} \pi r^{2} h$	$\begin{aligned} & h=\text { height of cone } \\ & r=\text { radius of cone } \\ & l=\text { slant height } \\ & =\sqrt{h^{2}+r^{2}} \end{aligned}$
Sphere	r	$4 \pi r^{2}$	None	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$	r : radius of sphere
Hemisphere	\rightarrow	$2 \pi r^{2}$	πr^{2}	$3 \pi r^{2}$	$\frac{2}{3} \pi r^{3}$	r : radius of hemisphere
Spherical shell		$\begin{aligned} & 4 \pi R^{2} \text { (Outer) } \\ & 4 \pi r^{2} \text { (Inner) } \end{aligned}$	None	$4 \pi R^{2}+4 \pi r^{2}$	$\left\|\begin{array}{l} \frac{4}{3} \pi \\ \left(R^{3}-r^{3}\right) \end{array}\right\|$	R:Radius of outer shell $r:$ Radius of inner shell

MEAN (AVERAGE): Mean [Ungrouped Data] - Mean of n observations, $x_{1}, x_{2}, x_{3} \ldots x_{n}$, is

$$
\overline{\mathrm{X}}=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}=\frac{1}{n} \sum x \quad \therefore \quad \overline{\mathrm{X}}=\frac{\sum x}{n}
$$

MEAN [Grouped Data]: The mean for grouped data can be found by the following three methods:
(i) Direct Mean Method:

$$
\overline{\mathrm{X}}=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}
$$

Class Mark $=\begin{array}{llccc}\text { Upper } & \text { Class } & \text { Limit }+ \text { Lower } & \text { Class } & \text { Limit } \\ & & 2 & & \end{array}$

Note: Frequency of a class is centred at its mid-point called class mark.
(ii) Assumed Mean Method: In this, an arbitrary mean 'a' is chosen which is called, 'assumed mean', somewhere in the middle of all the values of x.

$$
\overline{\mathrm{X}}=a+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}
$$

MEDIAN: Median is a measure of central tendency which gives the value of the middle-most observation in the data.
(i) Ungrouped data: If n is odd \rightarrow Median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ observation

$$
\text { If } n \text { is even } \rightarrow \text { Median }=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { observation }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { observation }}{2}
$$

Remember! For ungrouped data, first arrange the observations in ascending order or descending order.
(ii) Median (Grouped Data): Median $=l+\left(\frac{\frac{n}{2}-c . f .}{f}\right) \times h$
...where|| $=$ Lower limit of median class; $\mathrm{n}=$ Number of observations; $\mathrm{f}=$ Frequency of median class; c.f. $=$ Cumulative frequency of preceding class; $h=$ Class size]

Mode:
(i) Ungrouped Data: The value of the observation having maximum frequency is the mode.
(ii) Grouped Data:

$$
\text { Mode }=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h
$$

...where[] = Lower limit of modal class; $f_{1}=$ Frequency of modal class; $f_{0}=$ Frequency of the class preceding the modal class; $f_{2}=$ Frequency of the class succeeding the modal class; $h=$ Size of class interval. c.f. $=$ Cumulative frequency of preceding class; $\mathrm{h}=$ Class size]

Mode $=3$ Median -2 Mean
Median $=\frac{\text { Mode }+2 \text { Mean }}{3}$
Mean $=\frac{3 \text { Median }- \text { Mode }}{2}$

CHAPTER 15

Probability: It is the numerical measurement of the degree of certainty.

- Theoretical probability associated with an event E is defined as "If there are ' n ' elementary events associated with a random experiment and m of these are favourable to the event E then the probability of occurrence of an event is defined by $\mathrm{P}(\mathrm{E})$ as the ratio $\frac{m}{n}$ ".

$$
P(E)=\frac{\text { Number of outcomes favourable to } E}{\text { Number of all possible outcomes of the experiment }} . \quad \text { Thus, } P(E)=\frac{m}{n}
$$

- If $P(E)=1$, then it is called a 'Certain Event'.
- If $P(E)=0$, then it is called an 'Impossible Event'.
- The probability of an event E is a number $P(E)$ such that: $0 \leq P(E) \leq 1$
- An event having only one outcome is called an elementary event. The sum of the probabilities of all the elementary events of an experiment is 1.
- For any event $\mathrm{E}, \mathrm{P}(\mathrm{E})+\mathrm{P}(\bar{E})=1$, where \bar{E} stands for 'not E^{\prime}. E and \bar{E} are called complementary events.
- Favourable outcomes are those outcomes in the sample space that are favourable to the occurrence of an event.

Sample Space

A collection of all possible outcomes of an experiment is known as sample space. It is denoted by'S' and represented in curly brackets.

One mark questions with sample

In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$,
$\angle \mathrm{DAE}=\angle \mathrm{BAC}$
[Common]
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$
[Corresponding angles]
By AA axiom of similarity
$\Delta \mathrm{ADE} \sim \triangle \mathrm{ABC}$
$\therefore \frac{\mathrm{AE}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{BC}}$
$\Rightarrow \frac{8}{8+2}=\frac{\mathrm{DE}}{6}$
$\Rightarrow \mathrm{DE}=4.8 \mathrm{~cm}$
If $\operatorname{cosec} \theta=\frac{5}{4}$, find the value of $\cot \theta$

$$
\cot ^{2} \theta=\operatorname{cosec}^{2} \theta-1
$$

$$
\begin{aligned}
& =\left(\frac{5}{4}\right)^{2}-1=\frac{25}{16}-1=\frac{25-16}{16}=\frac{9}{16} \\
\Rightarrow & \cot ^{2} \theta=\frac{9}{16}
\end{aligned}
$$

$\cot \theta=\frac{3}{4}$

If $x y=180$ and $H C F(x, y)=3$, then find the $L(M(x, y)$.

Product of numbers $=\operatorname{LCM}(x, y) \times \operatorname{HCF}(x, y)$

$$
\begin{aligned}
\Rightarrow & \text { LCM }(x, y) \times(3) & =180 \\
\Rightarrow & \text { LCM }(x, y) & =60
\end{aligned}
$$

4 Following table shows sale of shoes in a store during one month :

Size of shoe	3	4	5	6	7	8
Number of pairs sold	4	18	25	12	5	1

Maximum number of pairs sold $=25$ (size 5)
Model size of shoes $=5$

The decimal representation of $\frac{14587}{2^{I} \times 5^{4}}$ will terminate after how many decimal places?

Here $\frac{14587}{2 \times 5^{4}}=\frac{14587}{2 \times 625}=\frac{14587}{1250}=11.6696$
\therefore Four decimal places
6 If the sum of the seroes of the quadratic polynomial $3 \mathrm{~s}^{2}-$ kix +6 is 8 , then find the value of h_{1} тn in n. nn 1 a n.

If α and β are sum of the zeroes of $3 x^{2}-k x+6$ then

$$
\alpha+\beta=\frac{-(-k)}{3}=\frac{k}{3}
$$

$\Rightarrow \quad 3=\frac{k}{3}$
$\Rightarrow \quad k=9$
For what value of th, the pair of finear equations $8 x+y=8$ and 6 . + hy $=8$ does no have a solution

The given pair of linear equations does not have a solution if

$$
\begin{array}{ll}
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \\
\Rightarrow \quad & \frac{3}{6}=\frac{1}{k} \neq \frac{3}{8} \quad \Rightarrow \quad \frac{3}{6}=\frac{1}{k} \quad \Rightarrow \quad k=2
\end{array}
$$

8 If \& chairs and 1 table costs \$ 1500 and 6 chairs and 1 table costs 22400 . Form linear equations to represent this situation.

Let the cost of 1 chair $=₹ x$
And the cost of 1 table $=₹ y$
Now according to the question,

$$
3 x+y=1500 \quad \text { and } \quad 6 x+y=2400
$$

Which ter'm of the $A P 27,24,21$, ,.. is sero?

Let nth term of the given A.P. is zero then

	a_{n}	$=a+(n-1) d$
\Rightarrow	0	$=27+(n-1)(-3)$
\Rightarrow	0	$=27-3 n+3$
\Rightarrow	30	$=3 n \quad \Rightarrow \quad n=10$

$n^{\text {th }}$ term of an AP is given by

$$
a_{n}=a+(n-1) d
$$

$\Rightarrow \quad 4=a+(7-1) \times(-4)$
$\Rightarrow \quad 4=a+6 \times(-4) \quad \Rightarrow \quad a=-28$

11

For what values of h, the equation $9 n^{2}+6$ har $+4=0$ has equal roots?

The given quadratic equation $9 x^{2}+6 k x+4=0$ has equal roots then $b^{2}-4 a c=0$

$$
(6 k)^{2}-4 \times 9 \times 4=0
$$

$\Rightarrow \quad 36 k^{2}=144 \quad \Rightarrow \quad k^{2}=4 \quad \Rightarrow \quad k= \pm 2$
12 Find the roots of the equation $x^{2}+7 x+10=0$

The given equation is

$$
\begin{array}{rlrlrl}
x^{2}+7 x+10 & =0 & & \Rightarrow & x^{2}+5 x+2 x+10=0 \\
\Rightarrow & x(x+5)+2(x+5) & =0 & & \Rightarrow & \\
\Rightarrow & x & =-5, x=-2 & & &
\end{array}
$$

13 For what value(s) of 'a' quadratic equation $3 a x^{2}-6 x+1=0$ has no real roots?
The given equation $3 a x^{2}-6 x+1=0$ has no real roots i.e. $b^{2}-4 a c<0$
\Rightarrow
$(-6)^{2}-4(3 a)(1)<0$
\Rightarrow
$36-12 a<0$
\Rightarrow
$12 a>36$
\Rightarrow $a>3$

14 If $P Q=28 \mathrm{~cm}$, then find the perimeter of $\triangle P L M$.

If two tangents inclined at 60° are drawn to a circle of radius 3 cm then find the length of each tangent.

$$
\begin{aligned}
\mathrm{PQ} & =\mathrm{PT} \\
\mathrm{PL}+\mathrm{LQ} & =\mathrm{PM}+\mathrm{MT} \quad \Rightarrow \quad \mathrm{PL}+\mathrm{LN}=\mathrm{PM}+\mathrm{MN} \\
\text { Perimeter }(\triangle \mathrm{PLM}) & =\mathrm{PL}+\mathrm{LM}+\mathrm{PM} \\
& =\mathrm{PL}+\mathrm{LN}+\mathrm{MN}+\mathrm{PM} \\
& =2(\mathrm{PL}+\mathrm{LN})=2(\mathrm{PL}+\mathrm{LQ}) \\
& =2 \times 28=56 \mathrm{~cm}
\end{aligned}
$$

$P Q$ is a tangent to a circle with centre 0 at point P. If $\triangle O P Q$ is an isosceles triangle, then find $\angle O Q P$.

In $\triangle \mathrm{OPQ}$

$$
\begin{array}{lrlll}
& \angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{O}=180^{\circ} \\
\Rightarrow & 2 \angle \mathrm{Q}+\angle \mathrm{P}=180^{\circ} & (\because & \Delta \mathrm{OPQ} \text { is an isosceles triangle }) \\
\Rightarrow & 2 \angle \mathrm{Q}+90^{\circ}=180^{\circ} & & \\
\Rightarrow & 2 \angle \mathrm{Q}=90^{\circ} & \Rightarrow & \angle \mathrm{Q}=45^{\circ}
\end{array}
$$

16 If two tangents inclined at 60° are drawn to a circle of radius 3 cm then find the length of each tangent.

According to given condition in question
PA and PB are two tangents drawn to a circle then
In \triangle PAO

		$\tan 30^{\circ}$	$=\mathrm{AO} / \mathrm{PA}$
\Rightarrow		$1 / \sqrt{3}$	$=3 / \mathrm{PA}$
\Rightarrow		PA	$=3 \sqrt{3} \mathrm{~cm}=\mathrm{PB}$

17 In the $\triangle A B C, D$ and E are points on side $A B$ and $A C$ respectively such that $D E \| B C$. $I f A E=2 \mathrm{~cm}$, $A D=3 \mathrm{~cm}$ and $B D=4.5 \mathrm{~cm}$ then find $C E$.
According to mid-point theorem

$$
\begin{array}{ll}
& \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{CE}} \\
\therefore \quad & \frac{3}{4.5}=\frac{2}{\mathrm{CE}} \\
\Rightarrow \quad & \mathrm{CE}=\frac{4.5 \times 2}{3}=1.5 \times 2 \quad \Rightarrow \quad \mathrm{CE}=3 \mathrm{~cm}
\end{array}
$$

8:5
$19 \sin A+\cos B=1, A=30^{\circ}$ and B is an acule angle, then find the value of B.

Given $\sin 30^{\circ}+\cos \mathrm{B}=1$

$$
\begin{array}{lllrl}
\Rightarrow & \frac{1}{2}+\cos \mathrm{B} & =1 & \Rightarrow & \cos \mathrm{~B}
\end{array}=1-\frac{1}{2}=\frac{1}{2}
$$

If $x=2 \sin ^{2} \theta$ and $y=2 \cos ^{2} \theta+1$, then find $x+y$.

$$
\begin{aligned}
x+y & =2 \sin ^{2} \theta+2 \cos ^{2} \theta+1 \\
& =2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+1 \\
& =3
\end{aligned} \quad\left[\because \quad\left(\sin ^{2} \theta+\cos ^{2} \theta=1\right)\right]
$$

21 In a circle of diameter 42 cm , if an are subtends an angle al 60° al the centre where $\pi=2217$, then whal will be the length of are.

Length of arc $=\theta / 360^{\circ}(2 \pi r)=60 / 360(2 \times 22 / 7 \times 21)=22 \mathrm{~cm}$
2212 solid spheres of the same radii are made by melting a solid metallic cylinder of base diameter 2 cm and height 16 cm . Find the diameter of the each sphere.

According to question, $\pi \mathrm{R}^{2} \mathrm{H}=12 \times 4 / 3 \pi r^{3}$ where r is radius of sphere

$$
1 \times 1 \times 16=4 / 3 \times r^{3} \times 12
$$

$\Rightarrow \quad r^{3}=1 \quad \Rightarrow \quad r=1$
23 Find the probability of getting a doublet in a throw of a pair of dice.

Probability of getting a doublet $=\frac{1}{6}$
24
Find the probability of getling a black queen when a card is drawn al random from a well. shufled pack of 52 cards

Probability of getting a black queen $=\frac{2}{52}=\frac{1}{26}$
25 Find the values of \boldsymbol{k} for which the quadratic equation $9 x^{2}-3 k x+k=0$ has equal roots.

For equal roots, $\mathrm{D}=0$
$\therefore b^{2}-4 a c=0$
$\Rightarrow(-3 k)^{2}-4 \times 9 \times k=0$
$\Rightarrow 9 k^{2}-36 k=0 \quad \Rightarrow \quad 9 k(k-4)=0$
\Rightarrow Either $k=0$ or $k-4=0$ i.e. $k=0$ or 4
If $\sqrt{3} \sin \theta=\cos \theta$, find the value of $\frac{3 \cos ^{2} \theta+2 \cos \theta}{3 \cos \theta+2}$.
$\Rightarrow \frac{\sin \theta}{\cos \theta}=\frac{1}{\sqrt{3}}$ or $\tan \theta=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan \theta=\tan 30^{\circ} \Rightarrow \theta=30^{\circ}$

$$
\begin{aligned}
& \text { Now, } \frac{3 \cos ^{2} \theta+2 \cos \theta}{3 \cos \theta+2}=\frac{\cos \theta(3 \cos \theta+2)}{(3 \cos \theta+2)} \\
& =\cos \theta=\cos 30^{\circ}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

If the quadratic equation $p x^{2}-2 \sqrt{5} p x+15=0$ has two equal roots, then find the value of p.

For equal roots, $\mathrm{D}=0$
$\Rightarrow b^{2}-4 a c=0$
$\Rightarrow(-2 \sqrt{5})^{2}-4 \times p \times 15=0$
$\Rightarrow 20-60 p=0$
$\Rightarrow p=\frac{1}{3}$
28 Two different dice are tossed together. Find the probability that the product of the two numbers on the top of the dice is 6 .

Let A be the event such that
$\mathrm{A}=$ Product of the numbers on the top of the dice is 6 .
\therefore Favourable outcomes $(1,6),(2,3),(3,2)$,
$(6,1)$
: No. of favourable out comes $=4$
$:$ Required probability $=P(A)=\frac{4}{36}=\frac{1}{9}$
29 In Figure given below $P Q$ is a chord of a circle with centre O and $P T$ is a tangent.
If $\angle \mathrm{QPT}=\mathbf{6 0}$, find $\angle \mathrm{PRQ}$.

$\angle \mathrm{XPQ}+\angle \mathrm{QPT}=180^{\circ}$ (linear pair)
$\angle \mathrm{XPQ}+60^{\circ}=180^{\circ}$
$\angle \mathrm{XPQ}=120^{\circ}$
Now $\angle \mathrm{XPQ}=\angle \mathrm{PRQ} \quad$ [Angle made by a chord with a tangent is equal to angle subtended by the chord in alternate segment]
$\angle \mathrm{PRQ}=120^{\circ}$
In Figure given below a tower AB is 20 m high and $B C$, its shadow on the ground, is $20 \sqrt{3} \mathrm{~m}$ long. Find the Sun's altitude.

Let Sun's altitude $=\theta=\angle \mathrm{ACB}$
In right angled $\triangle \mathrm{ABC}$, we have
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\tan \theta=\frac{20}{20 \sqrt{3}}=\frac{1}{\sqrt{3}}=\tan 30^{\circ} \Rightarrow \theta=30^{\circ}$

Try these...practice(1 or 2 marks)

Solve and get it checked it from subject teacher

The HCF of two numbers and bis 5 and their $L C M$ is 200 . Find the product ab.

Find the oalue of h for which $x=2$ is a solution of the equation $h x^{2}+2 x-8=0$.
3 If in an $A, P_{y}, a=1 b, d=-8$ and $a_{n}=0$, then find the value of n_{1}
4 If $\sin x+\cos y=1 ; x=30^{\circ}$ and y is an acute angle, find the value of y.
 suthen

6 Find the value of a' so that the point (3, a) lies on the line reprevented $b y 2 x-8 y=5$.

 andid.

9 A child has a die whose 6 faces show the letters given below:

$$
\begin{array}{|c|}
\hline A \\
\hline
\end{array} \boxed{A} \boxed{B}
$$

The die is thrown once. What is the probability of getting (i) A (ii) B ?

Find the HCP of of12 and 1314 using prime factorisation

 thoroughy, One card is drower af randon foom the bor Pind the probidility that the number on

Foy what walwe of h, does the system of linear equations

$$
\begin{aligned}
& 2 x+3 y=7 \\
& (h-1) x+(h+2) y=3 h
\end{aligned}
$$

have an infinite number of solutions?

14

 Let $p(x)=x^{4}+x^{2}-14 x^{2}-2 x+24$

Prove that: $\frac{\tan \theta}{1-\tan \theta}-\frac{\cot \theta}{1-\cot \theta}=\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}$

A part of monthly hostel charges in a college hostel are fued and the remaining depends on the number of days one has tahen food in the mess. When a student A tahes food for 25 days he has to pay $\mathbf{~ 4 , 5 0 0}$, whereas a student B who tahes food for 30 days, has to pay $\boldsymbol{~} 5,200$. Find the fived charger per month and the cost of food per day.

 are shaded Find the reen of the ehaded region

21

Iftan2A $=\cot \left(A-18^{\circ}\right)$, where $2 A$ A sis an acute angle, find the ralur of.A.

22 A juice seller was serving his customers using glasses as shown in Figure. The inner diameter of the cylindrical glass was 5 cm but bottom of the glass had a hemispherical raised portion which reduced the capacity of the glass. If the height of aglass was 10 cm , find the apparent and actual capacity of the glass. (Use $\pi=3.14$)

2 MARKS, 3 MARKS \& 5 MARKS WITH SURE SHOT...

1 Find whether the following pair of linear equations is consistent or inconsistent :
$3 x+2 y=8$
$6 x-4 y=9$
Here, $\frac{a_{1}}{a_{2}}=\frac{3}{6}=\frac{1}{2}, \frac{b_{1}}{b_{2}}=\frac{2}{-4}=\frac{-1}{2}$
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, which will give a unique
solution.
2 Explain why $(17 \times 5 \times 11 \times 3 \times 2+2 \times 11)$
is a composite number ?
[2]
$17 \times 5 \times 11 \times 3 \times 2+2 \times 11$
$=17 \times 5 \times 3 \times 22+22$
$=22(17 \times 5+3 \times 1)$
$=22(255+1)=2 \times 11 \times 256$
Given expression is divisible by 2,11 and 256 , which means it has more than 2 prime factors.
$(17 \times 5 \times 11 \times 3 \times 2+2 \times 11)$ is a composite number.

Prove the following identity :

$$
\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}=1-\sin \theta \cdot \cos \theta
$$

L.H.S. $=\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}$

$$
=\frac{(\sin \theta+\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \cdot \cos \theta\right)}{(\sin \theta+\cos \theta)}
$$

$=1-\sin \theta \cdot \cos \theta=$ R.H.S.
4 Show that the mode of the series obtained by combining the two series S_{1} and S_{2} given below is different from that of S_{1} and S_{2} taken separately :
$\mathrm{S}_{1}: 3,5,8,8,9,12,13,9,9$
$S_{2}: 7,4,7,8,7,8,13$
Mode of S_{1} series $=9$ [_ observation 9 repeated max. no. of times i.e. 3 times]
Mode of S_{2} series $=7$ [_ observation 7 repeated max no. of times i.e. 3 times]
After combining S_{1} and S_{2}, the new series will be ; $3,5,8,8,9,12,13,9,9,7,4,7,8,7,8,13$.
Mode of combined series $=8$ (maximum times i.e. 4 times)
Mode of $\left(S_{1}, S_{2}\right)$ is different from mode of S_{1} and mode of S_{2} separately. Hence Proved.
Solve by elimination :
$3 x-y=7$
$2 x+5 y+1=0$

Given equations are : $3 x-y=7$
$2 x+5 y=-1$
Multiplying equation (i) by 5 and solving it with equation (ii), we get
$2 x+5 y=-1$
$15 x-5 y=35$
$17 x=34 \quad$ (on Adding)
$x=\frac{34}{17}=2$
Putting the value of x in (i), we have
$3(2)-y=7$
$\Rightarrow 6-y=7 \Rightarrow-y=7-6 \Rightarrow y=-1$
$\therefore x=2, y=-1$ Ans.

If $\sec \theta+\boldsymbol{\operatorname { t a n }} \theta=p$, prove that $\sin \theta=\frac{p^{2}-1}{p^{2}+1}$
R.H.S. $=\frac{p^{2}-1}{p^{2}+1}$
$=\frac{(\sec \theta+\tan \theta)^{2}-1}{(\sec \theta+\tan \theta)^{2}+1}=\frac{\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta-1}{\sec ^{2} \theta+\tan ^{2}+2 \sec \theta \tan \theta+1}$
$\left[\operatorname{By}(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=\frac{\left(\sec ^{2} \theta-1\right)+\tan ^{2} \theta+2 \sec \theta \tan \theta}{\sec ^{2} \theta+\left(1+\tan ^{2} \theta\right)+2 \sec \theta \tan \theta}$
$=\frac{\tan ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta}{\sec ^{2} \theta+\sec ^{2} \theta+2 \sec \theta \tan \theta} \quad\left[\begin{array}{l}\because \sec ^{2} \theta-1=\tan ^{2} \theta \\ \operatorname{and~}^{2} \sec ^{2} \theta=1+\tan ^{2} \theta\end{array}\right]$
$=\frac{2 \tan ^{2} \theta+2 \sec \theta \tan \theta}{2 \sec ^{2} \theta+2 \sec \theta \tan \theta}=\frac{2 \tan \theta(\tan \theta+\sec \theta)}{2 \sec \theta(\sec \theta+\tan \theta)}=\frac{\tan \theta}{\sec \theta}=\frac{\frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}}$
$=\sin \theta=$ L.H.S.
$7 \quad$ The average score of boys in the examination of a school is 71 and that of the girls is 73. The average score of the school in the examination is 71.8. Find the ratio of number of boys in the number of girls who appeared in the examination.

Let the number of boys $=n_{1}$
and number of girls $=n_{2}$
Average boys' score $=71=\bar{X}_{1}$ (Let)
Average girls' score $=73=\bar{X}_{2}$ (Let)
Combined mean $=\frac{n_{1} \overline{\mathrm{X}}_{1}+n_{2} \overline{\mathrm{X}}_{2}}{n_{1}+n_{2}}$
$71.8=\frac{n_{1}(71)+n_{2}(73)}{n_{1}+n_{2}} \quad \Rightarrow 71 n_{1}+73 n_{2}=71.8 n_{1}+71.8 n_{2}$
$71 n_{1}-71.8 n_{1}=71.8 n_{2}-73 n_{2} \Rightarrow-0.8 n_{1}=-1.2 n_{2}$
$\frac{n_{1}}{n_{2}}=\frac{1.2}{0.8} \Rightarrow \frac{n_{1}}{n_{2}}=\frac{3}{2} \Rightarrow n_{1}: n_{2}=3: 2$
No. of boys : No. of girls $=3: 2$. Ans.

Prove that :
$(1+\cot A+\tan A) \cdot(\sin A-\cos A)=\frac{\sec ^{3} A-\operatorname{cosec}^{3} A}{\sec ^{2} A \cdot \operatorname{cosec}^{2} A}$

$$
\begin{aligned}
& \text { L.H.S. }=(1+\cot \mathrm{A}+\tan \mathrm{A})(\sin \mathrm{A}-\cos \mathrm{A}) \\
& =\left(1+\frac{\cos A}{\sin A}+\frac{\sin A}{\cos A}\right)(\sin A-\cos A)=\left(\frac{\sin A \cos A+\cos ^{2} A+\sin ^{2} A}{\sin A \cdot \cos A} \div(\sin A-\cos A)\right. \\
& =\frac{\sin ^{3} \mathrm{~A}-\cos ^{3} \mathrm{~A}}{\sin \mathrm{~A} \cdot \cos \mathrm{~A}} \\
& \text { [Using } \left.a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right] \\
& =\frac{\frac{\sin ^{3} \mathrm{~A}}{\sin ^{3} \mathrm{~A} \cdot \cos ^{3} \mathrm{~A}}-\frac{\cos ^{3} \mathrm{~A}}{\sin ^{3} \mathrm{~A} \cdot \cos ^{3} \mathrm{~A}}}{\frac{\sin \mathrm{~A} \cos \mathrm{~A}}{\sin ^{3} \mathrm{~A} \cdot \cos ^{3} \mathrm{~A}}} \\
& \text { [Dividing Num. and Deno. by } \sin ^{3} \mathrm{~A} \cdot \cos ^{3} \mathrm{~A} \text {] } \\
& =\frac{\sec ^{3} \mathrm{~A}-\operatorname{cosec}^{3} \mathrm{~A}}{\sec ^{2} \mathrm{~A} \cdot \operatorname{cosec}^{2} \mathrm{~A}}=\text { R.H.S. }
\end{aligned}
$$

In Figure given below two tangents RQ and RP are drawn from an external point R to the circle with centre O. If $\angle P R Q=$ $12 \mathbf{0}^{\circ}$, then prove that $\mathrm{OR}=\mathrm{PR}+\mathrm{RQ}$.

$\therefore \angle \mathrm{PRO}=\angle \mathrm{QRO}=60^{\circ}$
In right $\triangle \mathrm{OPR} \quad(\because \mathrm{OP} \perp \mathrm{PR})$
$\frac{\mathrm{PR}}{\mathrm{OR}}=\cos 60^{\circ}=\frac{1}{2}$
$\Rightarrow \mathrm{OR}=2 \mathrm{PR}$
Similarly $\frac{\mathrm{QR}}{\mathrm{OR}}=\frac{1}{2}$

$\Rightarrow \mathrm{OR}=2 \mathrm{QR}$
(i) + (ii), we get
$2 \mathrm{OR}=2 \mathrm{PR}+2 \mathrm{QR}$
Thus, $\mathrm{OR}=\mathrm{PR}+\mathrm{RQ}$
The 4 th term of an AP is twice its sth terin. Ifits Gih term is - 8 , then finci the summ orits finst 20 termis.
Let 1 st term of $A P=a$ and
common difference $=d$
According to given condition, we have
$a_{14}=2 a_{8}$
$a+13 d=2(a+7 d) \Longrightarrow a=-d$
A1so $a_{6}=8 \Longrightarrow a+5 d=-8$
$-d+5 d=-8 \Longrightarrow 4 d=-8 \Longrightarrow d=-2$
$a=2$
We know that $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$
$s_{20}=\frac{20}{2}(2 \times 2+19 \times(-2)$
$=10 \times(-34)=-340$
17. Case Study based-1

SUN ROOM

The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using

- Four clear glass panels, trapezium in shape, all the same size
- One tinted glass panel, half a regular octagon in shape

(a) Refer to Top View

Find the mid-point of the segment joining the points $J(6,17)$ and $I(9,16)$.
(i) $(33 / 2,15 / 2)$
(ii) $(3 / 2,1 / 2)$
(iii) $(15 / 2,33 / 2)$
(iv) $(1 / 2,3 / 2)$
(b) Refer to Top View

The distance of the point P from the y-axis is
(i) 4
(ii) 15
(iii) 19
(iv) 25
(c) Refer to Front View

The distance between the points A and S is
(i) 4
(ii) 8
(iii) 16
(iv) 20
(d) Refer to Front View

Find the co-ordinates of the point which divides the line segment joining the points A and B in the ratio $1: 3$ internally.
(i) $(8.5,2.0)$
(ii) $(2.0,9.5)$
(iii) $(3.0,7.5)$
(iv) $(2.0,8.5)$
(e) Refer to Front View

If a point (x, y) is equidistant from the $Q(9,8)$ and $S(17,98)$ then
(i) $x+y=13$
(ii) $x-y=0$
(iii) $y-13=0$
(iv) $x-y=13$
(a) (iii) $\left(\frac{15}{2}, \frac{33}{2}\right)$
(b) (i) 4
(c) (iii) 16
(d) (iv) $(2.0,8.5)$
(e) (ii) $x-13=0$
18. Case Study Based-2

SCALE FACTOR AND SIMILARITY
SCALE FACTOR
A scale draving of an object is the same shape as the object but a different size.
The scale of a draving is a comparison of the length used on a drawing to the length it represents. The scale is written as a ratio.
SIMILAR FIGURES
The ratio of two corresponding sides in similar figures is called the scale factor.

$$
\text { Scale factor }=\frac{\text { length in image }}{\text { corresponding length in object } t}
$$

If one shape can become another using Resizing then the shapes are similar.

Rotation or Tum

Reflection or Flip

Translation or Slide

Hence the two shapes are similar when one can become the other after a resize, flip, slide or turn.
(a) A model of a boat is made on the scale of 1:4. The model is 120 cm long. The full size of the boat has a width of 60 cm. What is the width of the scale model?

(i) 20 cm
(ii) 25 cm
(iii) 15 cm

(iv) 240 cm

liiil Ihe wre frusuddeld dam
(i) The are wo thenirivr ingue of ore ander
(c) Iftwo similar triangles have a scale factor of a:b. Which statement regarding the two triangles is true?
(i) The ratio of their perimeters is $3 a: b$
(ii) Their altitudes have a ralio $a: b$
(iii) Their medians have a ratio $\frac{a}{2}: b$
(iv) Their angle bisectors hawe a ratio $a^{2}: b^{2}$
(d) The shadow of a stick 5 m long is 2 m . At the same time the shadow of a tree 12.5 m high is

(i) $3 m$
(ii) 3.5 m
(iii) 4.5 m
(iv) 5 m
(e) Below you see a student's mathematical model of a farmhouse roof with measurements. The attic floor, ABCD in the model, is a square. The beams that support the roof are the edges of a rectangular prism, EFGHKLMN. E is the middle of AT, F is the middle of BT, Gis the middle of CT, and H is the middle of DT. All the edges of the pyramid in the model have length of 12 m . What is the length of EF, where EF is one of the horizontal edges of the block?

(i) $24 m$
(ii) 3 m
(iii) 6 m
(iv) 10 m
(a) (iii) 15 cm
(b) (iv) They are not the mirror image of one another
(c) (ii) Their altitudes have a ratio $a: b$
(d) (iv) 5 m
(e) (iii) 6 m

3 Case Study Based-3

Applications of Parabolas-Highway Overpasses/Underpasses
A highway underpass is parabolic in shape.

(a) Parabolic Camber $y=2 x^{2} / n w$

Parabola: A parabola is the graph that results from $p(x)=a x^{2}+b x+c$. Parabolas are symmetric about a vertical line known as the Axis of Symmetry. The Axis of Symmetry runs through the maximum or minimum point of the parabola which is called the Vertex.

(a) If the highway overpass is represented by $x^{2}-2 x-8$. Then its zeroes are
(i) $(2,-4)$
(ii) $(4,-2)$
(iii) $(-2,-2)$
(iv) $(-4,-4)$
(b) The highway overpass is represented graphically.

Zeroes of a polynomial can be expressed graphically. Number of zeroes of polynomial is equal to number of points where the graph of polynomial
(i) Intersects x-axis
(ii) Intersects y-axis
(iii) Intersects y-axis or x-axis
(iv) None of the above
(c) Graph of a quadratic polynomial is a
(i) straight line
(ii) circle
(iii) parabola
(iv) ellipse
(d) The representation of Highway Underpass whose one zero is 6 and sum of the zeroes is 0 , is
(i) $x^{2}-6 x+2$
(ii) $x^{2}-36$
(iii) $x^{2}-6$
(iv) $x^{2}-3$
(e) The number of zeroes that polynomial $f(x)=(x-2)^{2}+4$ can have is
(i) 1
(ii) 2
(iii) 0
(iv) 3
(a) (ii) $(4,-2)$
(b) (i) intersects x-axis
(d) (ii) $x^{2}-36$
(e) (iii) 0
(c) (iii) parabola

A stopwatch was used to find the time that it took a group of students to run 100 m .

Time (in sec.)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
No. of students	8	10	13	6	3

(a) Estimate the mean time taken by a student to finish the race.
(i) 54
(ii) 63
(iii) 43
(iv) 50
(b) What will be the upper limit of the modal class?

$$
\text { (iv) } 80
$$

(i) 20
(ii) 40
(iii) 60
(1)
(i) Mean
(ii) Median
(iii) Mode
(iv) All of the above
(d) The sum of lower limits of median class and modal class is
(i) 60
(ii) 100
(iii) 80
(iv) 140
(e) How many students finished the race within 1 minute?
(i) 18
(ii) 37
(iii) 31
(iw) 8
(a) (iii) 43
(b) (iii) 60
(c) (ii) Median
(d) (iii) 80
(e) (iii) 31

2 marks questions with sample solutions...

$1 \quad 3$ bells ring at an inderval of 4,7 and 14 minutes. All three bells rang al 6 am, when the three bells will ring together nett?

Here $4=2 \times 2$

$$
\begin{aligned}
7 & =7 \times 1 \\
14 & =2 \times 7 \\
\text { LCM of } 4,7,14 & =2 \times 2 \times 7=28
\end{aligned}
$$

$\therefore \quad$ The three bells will ring together again at $6: 28 \mathrm{am}$.
Find the point on waxis which is equidistant from the points $(2,-2)$ and $(-4,2)$,

Let $\mathrm{P}(x, 0)$ be a point on x-axis then

$$
\mathrm{PA}=\mathrm{PB} \quad \Rightarrow \quad \mathrm{PA}^{2}=\mathrm{PB}^{2}
$$

$\Rightarrow \quad(x-2)^{2}+(0+2)^{2}=(x+4)^{2}+(0-2)^{2}$
$\Rightarrow \quad x^{2}+4-4 x+4=x^{2}+16+8 x+4$
$\Rightarrow \quad-4 x+4=8 x+16 \quad \Rightarrow \quad x=-1$
$\Rightarrow \mathrm{P}(-1,0)$
$P(-2,5)$ and $Q(3,2)$ are two points. Find the co-ordinates of the point R on $P Q$ such that $P R=2 Q R$.

$$
\begin{aligned}
& \text { Given } \mathrm{PR}=2 \mathrm{QR} \\
& \mathrm{PR}: \mathrm{QR}=2: 1 \\
& \mathrm{R}\left(\frac{1(-2)+2(3)}{2+1}, \frac{1(5)+2(2)}{2+1}\right) \\
& \mathrm{R}\left(\frac{4}{3}, 3\right)
\end{aligned}
$$

${ }^{4}$ Fud a quadrulup polynomial whose zeroes are $5-3 \sqrt{2}$ ard $5+3 \sqrt{2}$

Here

$$
\text { Sum of zeroes }=5-3 \sqrt{2}+5+3 \sqrt{2}=10
$$

and \quad Product of zeroes $=(5-3 \sqrt{2})(5+3 \sqrt{2})=7$

$$
\begin{aligned}
& \text { Required polynomial }=x^{2}-(\text { Sum of zeroes }) x+\text { product of zeroes } \\
& \Rightarrow \quad \mathrm{P}(x)=x^{2}-10 x+7
\end{aligned}
$$

5 Draw al line segment $A B$ of length 9 com. With A and B as centres, drum circles of radius 5 om and 3 em respectively. Construed tangents to each circle from the centre of the ot her circle.

If lan $A=s$, fra lie value of Infin A + Ito A

$$
\begin{aligned}
\tan \mathrm{A} & =\frac{3}{4}=\frac{3 k}{4 k} \\
\sin \mathrm{~A} & =\frac{3 k}{5 k}=\frac{3}{5}, \cos \mathrm{~A}=\frac{4 k}{5 k}=\frac{4}{5} \\
\frac{1}{\sin \mathrm{~A}}+\frac{1}{\cos \mathrm{~A}} & =\frac{5}{3}+\frac{5}{4}=\frac{(20+15)}{12}=\frac{35}{12}
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{3} \sin \theta & =\cos \theta & \Rightarrow & \frac{\sin \theta}{\cos \theta}=\frac{1}{\sqrt{3}} \\
\tan \theta & =\frac{1}{\sqrt{3}} & & \Rightarrow
\end{aligned}
$$

$$
\angle \mathrm{A}=\angle \mathrm{OPA}=\angle \mathrm{OSA}=90^{\circ}
$$

Hence,
$\angle \mathrm{SOP}=90^{\circ}$
Also,

$$
\mathrm{AP}=\mathrm{AS}
$$

Hence, OSAP is a square

$$
\begin{aligned}
\mathrm{AP} & =\mathrm{AS}=10 \mathrm{~cm} \\
\mathrm{CR} & =\mathrm{CQ}=27 \mathrm{~cm} \\
\mathrm{BQ} & =\mathrm{BC}-\mathrm{CQ}=38-27=11 \mathrm{~cm} \\
\mathrm{BP} & =\mathrm{BQ}=11 \mathrm{~cm} \\
x & =\mathrm{AB}=\mathrm{AP}+\mathrm{BP}=10+11=21 \mathrm{~cm}
\end{aligned}
$$

PRACTICE... 03 MARKS

$1 \quad$ The diameters of the lower and upper ends of a bucket in the form of a fiustum of a cone are 10 cm and 30 em respectively. Ifits heightis 24 (m, filld:
(i) The area of the metal sheet used to make the bucket.
(ii) Whytreshould aroid the bucket made by ordimary plastic?
 rood of the equadion.

The roold aund Bof the quadratie equation $x^{2}-54+8(k-1)=0$ are such hat $\alpha-\beta=1$. Find the value of k.

5 In the figure, $A B C D$ is a square of side 14 cm . Semicicreles are drawn with each side of square as diameler, Find the area of the shaded region.

6 The perimeters of two similar triangles are 25 inn and 15 in respectively. If one side of the first triange is 9 em, find dhe ength of the corresponding side of the second triangle.

7 In an equilateral triangle $A B C$, D is a point on side $\overline{B C}$ such that $B D$: $1 / B \overline{C C}$, Prove that $9 A D^{2}=7 A B^{2}$

8 The median of the following data is 16. Find the missing frequencies a and b if the total of the frequencies is 70.

Class	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Frequency	12	a	12	15	b	6	6	4

9 If the angles of elevation of the top of the candle from two coins distant ' a ' cm and 'b' cm ($a>$ b) from its base and in the same straight line from it are 30° and 60°, then find the height of the candle.
(3)

Three/Five marks questions for practice...

The mode of the following data is 67 . Find the missing frequency x.

Class	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Frequency	5	x	15	12	7

2 The two palm trees are of equal heights and are standing opposite each other on either side of the river, which is 80 m wide. From a point 0 between them on the riwer the angles of elevation of the top of the trees are 60° and 30°, respectively. Find the height of the trees and the distances of the point 0 from the trees.

The angles of depression of the top and bottom of a building 50 melers high as osserved from the top of a tower are 300° and 60° respectivety. Find the height of the bower, and also the horizontal distance between the building and the river.

Whater is flucing througha a ylindricad pipe of internal diamter 8 mm , into a cylindried lank of buse radius to in al the rade of O.7 mssec. By how much will the wader rise in the tank in half an hour?

 still wader and lhad of the stream

 will of the first $(p+i)$ timisis $-(p+0) /$

9
Construct an isosceles trimgle whose base is o om and altitude 4 on and then anothen triangle Whose sides are - time the corvepponding sides of the isosceles trimsts

10 A boy standing on a homixontal plane finds a bird flying at a distance of 100 m from him at an elevation of 30°. Aginl standing on the roof of a 20 m high building, find the elevation of the same bird to be 45°. The boy and the girl are on the opposite sides of the bird. Find the distance of the bird from the girl. (Given $\sqrt{2}=1,414$)

11 Find the values of frequencies x and y in the following frequency distribution table, if $N=100$ and median is 92.

Marhsi	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	Total
No. of Students:	10	x	25	30	y	10	100

12 Prove that:

$$
\frac{(1+\cot \theta+\tan \theta)(\sin \theta-\cos \theta)}{\left(\sec ^{3} \theta-\operatorname{cosec}^{3} \theta\right)}=\sin ^{2} \theta \cos ^{2} \theta
$$

An oper metallic buchet is in the shape of a frustum of a coner. If the diameters of the twe circullar Bnds of the buchet are 45 cm and 8 cm and the vertioal heighto of the buthet is 24 anl, find the area of the metallitic sheet ised to make the buthed Also furd the volume of the water it can hold

14 Given $\triangle A B C \sim \triangle P Q R$, if $\frac{A B}{P Q}=\frac{1}{3}$, then find $\frac{\text { ar } \triangle A B C}{\text { ar } \triangle P Q R}$

15 What is the value of $\left(\cos ^{2} 67^{\circ}-\sin ^{2} 23^{3}\right)$?
16 Find the distance of a point $\mathrm{P}(x, y)$ fron the origin.
If $x=3$ is one root of the quadratic equation $x^{2}-2 k x-6=0$, then find the ralue of .
18 Thatis the HCF of smallest prime number and the smallest composite number?

20 An integer is chosen random between 1 and 100 . Find the probability that it is:
(i) divisible by 8 .
(ii) not divisible by 8 .

Two different dice are tossed together. Find the probability

(i) of getting a doublet
ii) of getting a sum 10 , of the numbers on the two dice.

Find the ratio in which $P(4, \pi / 1)$ drixides the line segquent joimingst the points $A(2,3)$ and $B(6,-3)$. Hencefind 11 .
Gireen that $\sqrt{2}$ is isirtitional prove flat $(5+3 \sqrt{2})$ is min irtitional number.

In Fig., $A B C D$ is a rectangle. Find the values of x and y.

25

Find the sum of first 8 multiples of 3 .

26 A plane left 30 minutes late than its scheduled time and in order to reach the destimation 1500 km amay in time, it had to iucrease its speed by $100 \mathrm{~km} / \mathrm{h}$ from the usual speed. Find its usual speed.

 the cyluderisl 10 cm and its baseis of indiuls 3.5 cmim Find the total surface aren of the anticle.

If $4 \tan \theta=3$, evaluate $\left(\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}\right)$.

31 Find the area of the shaded region in Fig., where arcs drawn with centers A, B, C and D intersect in pairs at mid-points P, Q, R and S of the sides $A B, B C, C D$ and $D A$ respectively of a square $A B C D$ of side 12 cm .

If $A(-2,1), B(a, 0), C(4, b)$ and $D(1,2)$ are the vertices of aparillelogqam $A B C D$, find the values of a and b. Hence find the leng̣ts of its sides.

33

Fiud HCF andLCMof 404 and96and verify that $\mathrm{HCF} \times \mathrm{LC} \mathrm{CI}=$ Product of the tro geven numbers.

34

35 Dram a triangle $A B C$ rihh $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle those sides are $\frac{3}{4}$ of the corresponding sides of the $\triangle A B C$.

 same spoti Find the specd of the stleall.

39 A sobserved from the top of a 100 m hight light house from the sea-level, the angles of depression of tro ships are 30° and 45. If one ship is eancty behind the other on the same side of the light house, find the distance betreen troo ships.

40 The diameters of the lower and upper ends of a bucket in the form of a frustum of a cone are 10 cm and 30 cm respectively. If its height is 24 cm , find:
(i) The area of the metal sheet used to make the bucket.
(ii) Why we should avoid the bucket made by ordinary plastic?

The mean of the following distribution is 18 . Find the frequency f of the class $19-21$.

Class	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-25$
Frequency	3	6	9	13	f	5	4

Prove that: $\frac{\sin A-2 \sin ^{3} A}{2 \cos ^{3} A-\cos A}=\tan A$

44 Aheap of rice is in the form of a cone of base diameter 24 m and height 2.5 m . Find the volume of the rice. How much canvas cloth is required to just cover the heap?

[ftan $2 A=\cot \left(A-18^{\circ}\right)$, where $2 A$ is an acute angle, find the value of A.

 $A B C D$.

47 Prove that, il a rigght triangle, the square on the hypotenuse is equal to the sum of the squares on the other tro sides.

The table below shows the salaries of 280 persons:

Salary (In thousand $₹$)	(No. of persons)
$5-10$	49
$10-15$	133
$15-20$	63
$20-25$	15
$25-30$	6
$30-35$	7
$35-40$	4
$40-45$	2
$45-50$	1

Calculate the median salary of the data.
 clothis sequiredt to just cover the enem?

The angle of elevation of an aeroplane from a point A on the ground is 60 . After a flight of 30 seconds, the angle of elevation changes to 30 . If the plane is fying at a constant height of 3800 $\sqrt{8}$ metres, find the speed of the aeroplane.

Solve for x :

$$
\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x} ; a \neq b \neq 0, x \neq 0, x \neq-(a+b)
$$

 tooneplace of fiecimal.
 $E R 1 A C$, prove flatat $\triangle A B D \sim \triangle E C$,

If $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, show that $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$.

56
For what value of p, are the points $(2,1),(p,-1)$ and $(-1,8)$ collinear ?
57 Show that any positive odd integere 's of the form fin +1 or fin +8 or fin +5 , where in is some integern

58
If the $17^{\text {th }}$ term of an A.P. exceeds its $10^{\text {th }}$ term by 7 , find the common difference.

BEST OF LUCK

Class- X

Mathematics-Basic (241) Sample Question Paper 2020-21

Max. Marks: $\mathbf{8 0}$
Duration:3 hours

General Instructions:

1. This question paper contains two parts A and B.
2. Both Part A and Part B have internal choices.

Part - A:

1. It consists of two sections-I and II
2. Section I has 16 questions. Internal choice is provided in 5 questions.
3. Section II has four case study-based questions. Each case study has 5 case-based sub-parts. An examinee is to attempt any 4 out of 5 sub-parts.

Part - B:

1. Question No 21 to 26 are Very short answer Type questions of 2 mark each,
2. Question No 27 to 33 are Short Answer Type questions of 3 marks each
3. Question No 34 to 36 are Long Answer Type questions of 5 marks each.
4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.

Questi on No.	Part-A	Marks
	Section-I	1
1.	Express 156 as the product of primes.	1
2.	Write a quadratic polynomial, sum of whose zeroes is 2 and product is -8.	
3.	Given that HCF (96,404) is 4, find the LCM (96,404). State the fundamental Theorem of Arithmetic.	1

4	On comparing the ratios of the coefficients, find out whether the pair of equations $x-2 y=0$ and $3 x+4 y-20=0$ is consistent or inconsistent.	1	
5	If a and b are co-prime numbers, then find the $\operatorname{HCF}(a, b)$.	1	
6	Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60°. (Take $\pi=22 / 7$) OR A horse tied to a pole with 28 m long rope. Find the perimeter of the field where the horse can graze. (Take $\pi=22 / 7$)	1	
7	In the given fig. $D E \\| B C, \angle A D E=70^{\circ}$ and $\left\llcorner B A C=50^{\circ}\right.$, then angle LBCA = \qquad OR In the given figure, $\mathrm{AD}=2 \mathrm{~cm}, \mathrm{BD}=3 \mathrm{~cm}, \mathrm{AE}=3.5 \mathrm{~cm}$ and $\mathrm{AC}=7 \mathrm{~cm}$. Is DE parallel to BC ?	1	

8	The cost of fencing a circular field at the rate of Rs. 24 per metre is Rs. 5280. Find the radius of the field.	1
9	A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground where it makes an angle 30°. The distance between the foot of the tree to the point where the top touches the ground is 8 m . Find the height of the tree from where it is broken.	1
10	If the perimeter and the area of a circle are numerically equal, then find the radius of the circle	1
11	Write the empirical relationship among mean, median and mode.	1
12	To divide a line segment $B C$ internally in the ratio $3: 5$, we draw a ray $B X$ such that $\angle C B X$ is an acute angle. What will be the minimum number of points to be located at equal distances, on ray BX ?	1
13	For what values of p does the pair of equations $4 x+p y+8=0$ and $2 x+2 y+2$ $=0$ has unique solution? OR What type of straight lines will be represented by the system of equations $2 x+$ $3 y=5$ and $4 x+6 y=7$?	1
14	A bag contains 3 red balls and 5 black balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is red? OR A die is thrown once. What is the probability of getting a prime number?	1
15	A tower stands vertically on the ground. From a point on the ground, which is 15 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.	1
16	Probability of an event E + Probability of the event $\overline{\mathrm{E}}(\mathrm{not} \mathrm{E})$ is,	1

	Section-II Case study-based questions are compulsory. Attempt any 4 sub parts from each question. Each question carries 1 mark	
17	Mathematics teacher of a school took her $10^{\text {th }}$ standard students to show Red fort. It was a part of their Educational trip. The teacher had interest in history as well. She narrated the facts of Red fort to students. Then the teacher said in this monument one can find combination of solid figures. There are 2 pillars which are cylindrical in shape. Also 2 domes at the corners which are hemispherical. 7 smaller domes at the centre. Flag hoisting ceremony on Independence Day takes place near these domes.	
i)	How much cloth material will be required to cover 2 big domes each of radius 2.5 metres? (Take $\pi=22 / 7$) a) $75 \mathrm{~m}^{2}$ b) $78.57 \mathrm{~m}^{2}$ c) $87.47 \mathrm{~m}^{2}$ d) $25.8 \mathrm{~m}^{2}$ b)	1
ii)	Write the formula to find the volume of a cylindrical pillar. a) $\Pi r^{2} h$ b) $\Pi \mathrm{rl}$ c) $\Pi r(I+r)$ d) $2 \Pi r$	1
iii)	Find the lateral surface area of two pillars if height of the pillar is 7 m and radius of the base is 1.4 m . a) $112.3 \mathrm{~cm}^{2}$ b) $123.2 \mathrm{~m}^{2}$ c) $90 \mathrm{~m}^{2}$ d) $345.2 \mathrm{~cm}^{2}$	1
iv)	How much is the volume of a hemisphere if the radius of the base is 3.5 m ? a) $85.9 \mathrm{~m}^{3}$ b) $80 \mathrm{~m}^{3}$ c) $98 \mathrm{~m}^{3}$ d) $89.83 \mathrm{~m}^{3}$	1

v)	What is the ratio of sum of volumes of two hemispheres of radius 1 cm each to the volume of a sphere of radius 2 cm ? a) $1: 1$ b) $1: 8$ c) $8: 1$ d) $1: 16$	1
18	Class X students of a secondary school in Krishnagar have been allotted a rectangular plot of a land for gardening activity. Saplings of Gulmohar are planted on the boundary at a distance of 1 m from each other. There is a triangular grassy lawn in the plot as shown in the fig. The students are to sow seeds of flowering plants on the remaining area of the plot. Considering A as origin, answer question (i) to (v)	
i)	Considering A as the origin, what are the coordinates of A ? a) $(0,1)$ b) $(1,0)$ c) $(0,0)$ d) $(-1,-1)$	1
ii)	What are the coordinates of P ? a) $(4,6)$ b) (6,4) c) $(4,5)$ d) $(5,4)$	1
iii)	What are the coordinates of R? a) $(6,5)$ b) $(5,6)$ c) $(6,0)$ d) $(7,4)$	1
iv)	What are the coordinates of D ? a) $(16,0)$ b) $(0,0)$ c) $(0,16)$ d) $(16,1)$	1
v)	What are the coordinate of P if D is taken as the origin? a) $(12,2)$ b) $(-12,6)$ c) $(12,3)$ d) $(6,10)$	1

19	Rahul is studying in X Standard. He is making a kite to fly it on a Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the figure.	
i)	Rahul tied the sticks at what angles to each other? a) 30° b) 60° c) 90° d) 60°	1
ii)	Which is the correct similarity criteria applicable for smaller triangles at the upper part of this kite? a) RHS b) SAS c) SSA d) AAS	1
iii)	Sides of two similar triangles are in the ratio 4:9. Corresponding medians of these triangles are in the ratio, a) $2: 3$ b) $4: 9$ c) $81: 16$ d) $16: 81$	1
iv)	In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle. This theorem is called as, a) Pythagoras theorem b) Thales theorem c) Converse of Thales theorem d) Converse of Pythagoras theorem	1
v)	What is the area of the kite, formed by two perpendicular sticks of length 6 cm and 8 cm ? a) $48 \mathrm{~cm}^{2}$ b) $14 \mathrm{~cm}^{2}$ c) $24 \mathrm{~cm}^{2}$ d) $96 \mathrm{~cm}^{2}$	1

20	Due to heavy storm an electric wire got bent as shown in the figure. It followed a mathematical shape. Answer the following questions below.	
i)	Name the shape in which the wire is bent a) Spiral b) ellipse c) linear d) Parabola	1
ii)	How many zeroes are there for the polynomial (shape of the wire) a) 2 b) 3 d) 1 d) 0	1
iii)	The zeroes of the polynomial are a) $-1,5$ b) $-1,3$ c) 3,5 d) $-4,2$	1
iv)	What will be the expression of the polynomial? a) $x^{2}+2 x-3$ b) $x^{2}-2 x+3$ c) $x^{2}-2 x-3$ d) $x^{2}+2 x+3$	1
v)	What is the value of the polynomial if $x=-1$? a) 6 b) -18 c)) 18 d) 0	1
	Part -B All questions are compulsory. In case of internal choices, attempt anyone.	
21	Find the coordinates of the point which divides the line segment joining the points $(4,-3)$ and $(8,5)$ in the ratio $3: 1$ internally.	2

	OR Find a relation between x and y such that the point (x, y) is equidistant from the points $(7,1)$ and $(3,5)$	
22	In the fig. if $L M$ II $C B$ and $L N$ II $C D$, prove that $\frac{A M}{M B}=\frac{A N}{N D}$	2
23	A quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=$ $A D+B C$.	2
24	Draw a line segment of length 7.8 cm and divide it in the ratio $5: 8$. Measure the two parts.	2
25	Given $15 \cot A=8$, find $\sin A$ and $\sec A$. OR Find $\tan P-\cot R$	2

26	How many terms of the A. P : 9,17,25,must be taken to give a sum 636 ?	2
	Part -B All questions are compulsory. In case of internal choices, attempt anyone.	
27	Prove that $\sqrt{3}$ is an irrational number.	3
28	Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\llcorner P T Q=2\llcorner O P Q$.	3
29	Meena went to a bank to withdraw Rs.2,000. She asked the cashier to give her Rs. 50 and Rs. 100 notes only. Meena got 25 notes in all. Find how many notes of Rs. 50 and Rs. 100 she received.	3
30	A box contains 90 discs which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears (i) a two-digit number (ii) a perfect square number. (iii) a number divisible by 5 . OR One card is drawn from a well shuffled deck of 52 cards. Find the probability of getting (i) A king of red colour. (ii) A spade (iii) The queen of diamonds	3
31	Metallic spheres of radii $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm respectively are melted to form a solid sphere. Find the radius of the resulting sphere.	3

32	Prove that $\frac{\sin A-\cos A+1}{\sin A+\cos A-1}=\frac{1}{\sec A-\tan A}$	3
33	A motor boat whose speed in still water is $18 \mathrm{~km} / \mathrm{h}$, takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream. OR Find two consecutive odd positive integers, sum of whose squares is 290.	3
	Part -B All questions are compulsory. In case of internal choices, attempt anyone. anyone.	
34	The angles of depression of the top and bottom of a 8 m tall building from the top of a multi storied building are 30° and 45°, respectively. Find the height of the multi storied building and the distance between the two buildings. OR A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°.After sometime, the angle of elevation reduces 30°. Find the distance travelled by the balloon during the interval.	5
35	The $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}$ and $\mathrm{r}^{\text {th }}$ terms of an A.P. are a, b and c respectively. Show that $a(q-r)+b(r-p)+c(p-q)=0$	5

36	A survey regarding the heights in (cm) of 51 girls of class X of a school was conducted and the following data was obtained. Find the median height and the mean using the formulae.	5
\qquadHeight (in cm) Number of Girls Less than 140 4 Less than 145 11 Less than 150 29 Less than 155 40 Less than 160 46 Less than 165 51		

Class- X
 Mathematics-Basic (241)
 Marking Scheme SQP-2020-21

Max. Marks: 80
Duration:3hrs

1	$156=2^{2} \times 3 \times 13$	1
2	Quadratic polynomial is given by $x^{2}-(a+b) x+a b$ $x^{2}-2 x-8$	1
3	HCF X LCM =product of two numbers $\begin{aligned} & \operatorname{LCM}(96,404)=\frac{96 \times 404}{H C F(96,404)}=\frac{96 \times 404}{4} \\ & \operatorname{LCM}=9696 \end{aligned}$ OR Every composite number can be expressed (factorized) as a product of primes, and this factorization is unique, apart from the order in which the factors occur.	$1 / 2$ $1 / 2$ 1
4	$\begin{aligned} & x-2 y=0 \\ & 3 x+4 y-20=0 \\ & \frac{1}{3} \neq \frac{-2}{4} \end{aligned}$ As, $\frac{a 1}{a 2} \neq \frac{b 1}{b 2}$ is one condition for consistency. Therefore, the pair of equations is consistent.	$1 / 2$ $1 / 2$
5	1	1
6		$1 / 2$ $1 / 2$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
OR \\
Another method- \\
Horse can graze in the field which is a circle of radius 28 cm . \\
So, required perimeter \(=2 \Pi r=2 . \Pi(28) \mathrm{cm}\)
\[
\begin{aligned}
\& =2 \times \frac{22}{7} \times(28) \mathrm{cm} \\
\& =176 \mathrm{~cm}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \\
\hline 7 \& \begin{tabular}{l}
By converse of Thale's theorem DE II BC
\[
\angle A D E=\angle A B C=70^{\circ}
\] \\
Given \(\left\llcorner B A C=50^{\circ}\right.\) \\
\(\left\llcorner A B C+\angle B A C+\angle B C A=180^{\circ}\right.\) (Angle sum prop of triangles)
\[
70^{\circ}+50^{\circ}+\angle B C A=180^{\circ}
\]
\[
\left\llcorner B C A=180^{\circ}-120^{\circ}=60^{\circ}\right.
\] \\
OR \\
\(\mathrm{EC}=\mathrm{AC}-\mathrm{AE}=(7-3.5) \mathrm{cm}=3.5 \mathrm{~cm}\) \\
\(\frac{A D}{B D}=\frac{2}{3}\) and \(\frac{A E}{E C}=\frac{3.5}{3.5}=\frac{1}{1}\) \\
So, \(\frac{A D}{B D} \neq \frac{A E}{E C}\) \\
Hence, By converse of Thale's Theorem, DE is not Parallel to BC.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$

\hline 8 \& | $\begin{aligned} \text { Length of the fence } & =\frac{\text { Total cost }}{\text { Rate }} \\ & =\frac{\text { Rs. } 5280}{\text { Rs } 24 / \text { metre }}=220 \mathrm{~m} \end{aligned}$ |
| :--- |
| So, length of fence $=$ Circumference of the field $\therefore 220 \mathrm{~m}=2 \Pi \mathrm{r}=2 \times \frac{22}{7} \times r$ |
| So, $r=\frac{220 \times 7}{2 \times 22} \mathrm{~m}=35 \mathrm{~m}$ | \& $1 / 2$

$1 / 2$

\hline 9 \& | Sol: $\tan 30^{\circ}=\frac{A B}{B C}$ $\begin{aligned} & 1 / \sqrt{ } 3=\frac{A B}{8} \\ & A B=8 / \sqrt{ } 3 \text { metres } \end{aligned}$ |
| :--- |
| Height from where it is broken is $8 / \sqrt{ } 3$ metres | \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 10 \& \[
\begin{aligned}
\& \text { Perimeter = Area } \\
\& 2 \Pi r=\Pi r^{2} \\
\& r=2 \text { units }
\end{aligned}
\] \& 1 \\
\hline 11 \& 3 median \(=\) mode +2 mean \& 1 \\
\hline 12 \& 8 \& 1 \\
\hline 13 \& \begin{tabular}{l}
\(\frac{a 1}{a 2} \neq \frac{b 1}{b 2}\) is the condition for the given pair of equations to have unique solution.
\[
\begin{aligned}
\& \frac{4}{2} \neq \frac{p}{2} \\
\& p \neq 4
\end{aligned}
\] \\
Therefore, for all real values of \(p\) except 4, the given pair of equations will have a unique solution. \\
OR \\
Here, \(\frac{a 1}{a 2}=\frac{2}{4}=\frac{1}{2}\)
\[
\frac{b 1}{b 2}=\frac{3}{6}=\frac{1}{2} \text { and } \frac{c 1}{c 2}=\frac{5}{7}
\]
\[
\frac{1}{2}=\frac{1}{2} \neq \frac{5}{7}
\] \\
\(\frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2}\) is the condition for which the given system of equations will represent parallel lines. \\
So, the given system of linear equations will represent a pair of parallel lines.
\end{tabular} \& \\
\hline 14 \& \begin{tabular}{l}
No. of red balls \(=3\), No.black balls \(=5\) \\
Total number of balls \(=5+3=8\) \\
Probability of red balls \(=\frac{3}{8}\) \\
OR \\
Total no of possible outcomes \(=6\) \\
There are 3 Prime numbers, 2,3,5. \\
So, Probability of getting a prime number is \(\frac{3}{6}=\frac{1}{2}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$

\hline
\end{tabular}

15	$\begin{aligned} \tan 60^{\circ} & =\frac{h}{15} \\ \sqrt{3} & =\frac{h}{15} \\ h & =15 \sqrt{ } 3 \mathrm{~m} \end{aligned}$	$1 / 2$ $1 / 2$
16	1	1
17 i)	Ans: b) Cloth material required $=2 \mathrm{XS} \mathrm{A}$ of hemispherical dome $\begin{aligned} & =2 \times 2 \Pi r^{2} \\ & =2 \times 2 \times \frac{22}{7} \times(2.5)^{2} \mathrm{~m}^{2} \\ & =78.57 \mathrm{~m}^{2} \end{aligned}$	1
ii)	a) Volume of a cylindrical pillar $=\Pi \mathrm{r}^{2} \mathrm{~h}$	1
iii)	$\text { b) } \begin{aligned} \text { Lateral surface area } & =2 \times 2 \Pi \mathrm{rh} \\ & =4 \times \frac{22}{7} \times 1.4 \times 7 \mathrm{~m}^{2} \\ & =123.2 \mathrm{~m}^{2} \end{aligned}$	1
iv)	$\text { d) } \begin{aligned} & \text { Volume of hemisphere }=\frac{2}{3} \Pi \mathrm{r}^{3} \\ &=\frac{2}{3} \frac{22}{7}(3.5)^{3} \mathrm{~m}^{3} \\ &=89.83 \mathrm{~m}^{3} \end{aligned}$	1
v)	b) Sum of the volumes of two hemispheres of radius 1 cm each $=2 \times \frac{2}{3} \Pi 1^{3}$ Volume of sphere of radius $2 \mathrm{~cm}=\frac{4}{3} \Pi 2^{3}$ So, required ratio is $\frac{2 \times \frac{2}{3} \Pi 1^{3}}{\frac{4}{3} \Pi 2^{3}}=1: 8$	$1 / 2$ $1 / 2$

18 i)	c) $(0,0)$	1
ii)	a) $(4,6)$	1
iii)	a) $(6,5)$	1
iv)	a) $(16,0)$	1
v)	b) $(-12,6)$	1
19 i)	c) 90°	1
ii)	b) SAS	1
iii)	b) $4: 9$	1
iv)	d) Converse of Pythagoras theorem	1
v)	a) $48 \mathrm{~cm}^{2}$	1
20 i)	d) parabola	1
ii)	a) 2	1
iii)	b) $-1,3$	1
iv)	c) $x^{2}-2 x-3$	1
v)	d) 0	1
21	Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the required point. Using section formula $\begin{array}{ll} \left\{\frac{m 1 x 2+m 2 x 1}{m 1+m 2}, \frac{m 1 y 2+m 2 y 1}{m 1+m 2}\right\}= & (x, y) \\ x=\frac{3(8)+1(4)}{3+1} & , \quad y=\frac{3(5)+1(-3)}{3+1} \\ x=7 \end{array}$ $(7,3)$ is the required point	1

	OR Let $P(x, y)$ be equidistant from the points $A(7,1)$ and $B(3,5)$ Given $A P=B P$. So, $A P^{2}=B P^{2}$ $\begin{aligned} & \quad(x-7)^{2}+(y-1)^{2}=(x-3)^{2}+(y-5)^{2} \\ & x^{2}-14 x+49+y^{2}-2 y+1=x^{2}-6 x+9+y^{2}-10 y+25 \\ & \\ & x-y=2 \end{aligned}$	1 1
22	By BPT, $\begin{equation*} \frac{A M}{M B}=\frac{A L}{L C} \tag{1} \end{equation*}$ Also, $\frac{A N}{N D}=\frac{A L}{L C}$ By Equating (1) and (2) $\frac{A M}{M B}=\frac{A N}{N D}$	$1 / 2$ $1 / 2$ 1
23	To prove: $A B+C D=A D+B C$. Proof: AS = AP (Length of tangents from an external point to a circle are equal) $\begin{aligned} & B Q=B P \\ & C Q=C R \\ & D S=D R \\ & A S+B Q+C Q+D S=A P+B P+C R+D R \\ & (A S+D S)+(B Q+C Q)=(A P+B P)+(C R+D R) \\ & A D+B C=A B+C D \end{aligned}$	1 1
24	For the correct construction	2

\begin{tabular}{|c|c|c|}
\hline 25 \& \begin{tabular}{l}
\(15 \cot A=8\), find \(\sin A\) and \(\sec A\). Cot \(A=8 / 15\)
\[
\frac{A d j}{O p p o}=8 / 15
\] \\
By Pythagoras Theorem
\[
\begin{aligned}
\& A C^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
\& \mathrm{AC}=\sqrt{(8 x)^{2}+(15 x)^{2}} \\
\& \mathrm{AC}=17 \mathrm{x}
\end{aligned}
\] \\
\(\operatorname{Sin} A=15 / 17\) \\
\(\operatorname{Cos} A=8 / 17\) \\
By Pythagoras Theorem \\
\(\mathrm{QR}=\sqrt{(13)^{2}-(12)^{2}} \mathrm{~cm}\) \\
\(Q R=5 \mathrm{~cm}\) \\
Tan \(P=5 / 12\) \\
Cot \(\mathrm{R}=5 / 12\) \\
Tan P - Cot R =5/12-5/12 \(=0\)
\end{tabular} \& 1

$1 / 2$
$1 / 2$
$1 / 2$

1

\hline 26 \& $$
\begin{aligned}
& 9,17,25, \ldots \ldots . \\
& S_{n}=636 \\
& a=9 \\
& d=a_{2} \cdot a_{1} \\
& =17-9=8 \\
& \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S n=\frac{n}{2}[2 a+(n-1) d]
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& $$
\begin{aligned}
& 636=\frac{n}{2}[2 \times 9+(n-1) 8] \\
& 1272=n[18+8 n-8] \\
& 1272=n[10+8 n] \\
& 8 n^{2}+10 n-1272=0 \\
& 4 n^{2}+5 n-636=0 \\
& n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& n=\frac{-5 \pm \sqrt{5^{2}-4 \times 4 \times(-636)}}{2 \times 4} \\
& n=-\frac{-5 \pm 101}{8} \\
& n=\frac{96}{8} \\
& n=12 \quad n=\frac{-106}{8} \\
& n=12 \text { (since } n \text { cannot be negative) }
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

\hline 27 \& | Let $\sqrt{ } 3$ be a rational number. |
| :--- |
| Then $\sqrt{ } 3=p / q \quad \operatorname{HCF}(p, q)=1$ |
| Squaring both sides $\begin{aligned} & (\sqrt{ } 3)^{2}=(p / q)^{2} \\ & 3=p^{2} / q^{2} \\ & 3 q^{2}=p^{2} \end{aligned}$ |
| 3 divides $p^{2}>3$ divides p |
| 3 is a factor of p |
| Take $p=3 C$ $\begin{aligned} & 3 q^{2}=(3 c)^{2} \\ & 3 q^{2}=9 C^{2} \end{aligned}$ |
| 3 divides q^{2} » 3 divides q |
| 3 is a factor of q |
| Therefore 3 is a common factor of p and q |
| It is a contradiction to our assumption that p / q is rational. |
| Hence $\sqrt{ } 3$ is an irrational number. | \& | 1 |
| :--- |
| $1 / 2$ |
| $1 / 2$ |
| 1 |

\hline 28 \& \&

\hline
\end{tabular}

	Required to prove -: $\llcorner\mathrm{PTQ}=2\llcorner\mathrm{OPQ}$ Sol :- Let $\quad\llcorner P T Q=\theta$ Now by the theorem TP = TQ. So, TPQ is an isosceles triangle $\begin{aligned} & \left\llcorner\mathrm{TPQ}=\left\llcorner\mathrm{TQP}=1 / 2\left(180^{\circ}-\theta\right)\right.\right. \\ & =90^{\circ}-1 / 2 \theta \\ & \mathrm{LOPT}=90^{\circ} \\ & \angle \mathrm{OPQ}=\left\llcorner\mathrm{OPT}-\left\llcorner\mathrm{TPQ}=90^{\circ}-\left(90^{\circ}-1 / 2 \theta\right)\right.\right. \\ & \\ & =1 / 2 \theta \\ & \\ & =1 / 2\llcorner\mathrm{PTQ} \end{aligned}$ $\llcorner P T Q=2\llcorner O P Q$	1 1 $1 / 2$ $1 / 2$
29	Let Meena has received x no. of 50 re notes and y no. of 100 re notes.So, $\begin{aligned} & 50 x+100 y=2000 \\ & x+y=25 \end{aligned}$ multiply by 50 $\begin{gathered} 50 x+100 y=2000 \\ 50 x+50 y=1250 \\ -\quad-\quad- \\ \hline 50 y=750 \\ Y=15 \end{gathered}$ Putting value of $y=15$ in equation (2) $\begin{aligned} & x+15=25 \\ & x=10 \end{aligned}$ Meena has received 10 pieces 50 re notes and 15 pieces of 100 re notes	1 1 1 1
30	(i) 10,11,12...90 are two digit numbers. There are 81 numbers.So,Probability of getting a two-digit number $=81 / 90=9 / 10$ (ii) 1, 4, 9, 16, 25, 36, 49, 64,81 are perfect squares. So, Probability of getting a perfect square number. $=9 / 90=1 / 10$ (iii) $5,10,15 \ldots . .90$ are divisible by 5 . There are 18 outcomes.. So,Probability of getting a number divisible by 5 . $=18 / 90=1 / 5$	1 1 1 1

	OR (i) Probability of getting A king of red colour. $P(\text { King of red colour })=2 / 52=1 / 26$ (ii) Probability of getting A spade $P(\text { a spade })=13 / 52=1 / 4$ (iii) Probability of getting The queen of diamonds $P($ a the queen of diamonds $)=1 / 52$	1
31	$\begin{aligned} & r_{1}=6 \mathrm{~cm} \\ & r_{2}=8 \mathrm{~cm} \\ & r_{3}=10 \mathrm{~cm} \end{aligned}$ Volume of sphere $=4 / 3 \Pi r^{3}$ Volume of the resulting sphere = Sum of the volumes of the smaller spheres. $\begin{aligned} 4 / 3 \Pi r^{3} & =4 / 3 \Pi r_{1}{ }^{3}+4 / 3 \Pi r_{2}{ }^{3}+4 / 3 \Pi r_{3}{ }^{3} \\ 4 / 3 \Pi r^{3} & =4 / 3 \Pi\left(r_{1}{ }^{3}+r_{2}{ }^{3}+r_{3}{ }^{3}\right) \\ r^{3} & =6^{3}+8^{3}+10^{3} \\ r^{3} & =1728 \\ r & =\sqrt[3]{1728} \\ r & =12 \mathrm{~cm} \end{aligned}$ Therefore, the radius of the resulting sphere is 12 cm .	1 1 1 1
32	$(\sin A-\cos A+1) /(\sin A+\cos A-1)=1 /(\sec A-\tan A)$ L.H.S. divide numerator and denominator by $\cos \mathrm{A}$ $\begin{aligned} & =(\tan A-1+\sec A) /(\tan A+1-\sec A) \\ & =(\tan A-1+\sec A) /(1-\sec A+\tan A) \end{aligned}$ We know that $1+\tan ^{2} A=\sec ^{2} A$ $\begin{aligned} & \text { Or } 1=\sec ^{2} A-\tan ^{2} A=(\sec A+\tan A)(\sec A-\tan A) \\ & =(\sec A+\tan A-1) /[(\sec A+\tan A)(\sec A-\tan A)-(\sec A-\tan A)] \\ & =(\sec A+\tan A-1) /(\sec A-\tan A)(\sec A+\tan A-1) \end{aligned}$	1 1

\begin{tabular}{|c|c|c|}
\hline 34 \& \begin{tabular}{l}
Let AB and CD be the multi-storeyed building and the building respectively. \\
Let the height of the multi-storeyed building= \(h \mathrm{~m}\) and the distance between the two buildings \(=x \mathrm{~m}\). \\
\(\mathrm{AE}=\mathrm{CD}=8 \mathrm{~m}\) [Given]
\[
\mathrm{BE}=\mathrm{AB}-\mathrm{AE}=(h-8) \mathrm{m}
\] \\
and
\[
\mathrm{AC}=\mathrm{DE}=x \mathrm{~m} \text { [Given] }
\] \\
Also, \\
\(\angle \mathrm{FBD}=\angle \mathrm{BDE}=30^{\circ}\) (Alternate angles) \\
\(\angle \mathrm{FBC}=\angle \mathrm{BCA}=45^{\circ}\) (Alternate angles) \\
Now, \\
In \(\triangle\) ACB,
\[
\begin{align*}
\& \Rightarrow \tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}}\left[\because \tan \theta=\frac{\text { Perpendicular }}{\text { Base }}\right] \\
\& \Rightarrow 1=\frac{h}{x} \\
\& \Rightarrow x=h \ldots \ldots(i) \tag{i}
\end{align*}
\]
\end{tabular} \& 1

$1 / 2$
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Let \(A D=x \mathrm{~m}\) and \(A B=y \mathrm{~m}\). \\
Then in right \(\triangle A D E, \tan 60^{\circ}=\frac{D E}{A D}\)
\[
\begin{align*}
\& \sqrt{ } 3=\frac{87}{X} \\
\& X=\frac{87}{\sqrt{3}} \tag{i}
\end{align*}
\] \\
In right \(\triangle A B C, \tan 30^{\circ}=\frac{B C}{A B}\)
\[
\begin{align*}
\& \frac{1}{\sqrt{3}}=\frac{87}{y} \\
\& Y=87 \sqrt{ } 3 . \tag{ii}
\end{align*}
\] \\
Subtracting(i) and (ii)
\[
\begin{aligned}
\& y-x=87 \sqrt{3}--\frac{87}{\sqrt{3}} \\
\& y-x=\frac{87 \cdot 2 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} \\
\& y-x=58 \sqrt{3} \mathrm{~m}
\end{aligned}
\] \\
Hence, the distance travelled by the balloon is equal to BD
\[
y-x=58 \sqrt{ } 3 \mathrm{~m}
\]
\end{tabular} \& 1

1
1
1
1
1

\hline 35 \& | Let A be the first term and D the common difference of A.P. $\begin{align*} & T p=a=A+(p-1) D=(A-D)+p D \tag{1}\\ & T q=b=A+(q-1) D=(A-D)+q D \tag{2}\\ & T r=c=A+(r-1) D=(A-D)+r D \tag{3} \end{align*}$ |
| :--- |
| Here we have got two unknowns A and D which are to be eliminated. |
| We multiply (1),(2) and (3) by $q-r, r-p$ and $p-q$ respectively and add: $\begin{aligned} & \mathrm{a}(q-r)=(\mathrm{A}-\mathrm{D})(q-r)+\mathrm{D} p(q-r) \\ & \mathrm{b}(r-\mathrm{p})=(\mathrm{A}-\mathrm{D})(r-\mathrm{p})+\operatorname{Dq}(r-p) \\ & \mathrm{c}(\mathrm{p}-\mathrm{q})=(\mathrm{A}-\mathrm{D})(\mathrm{p}-\mathrm{q})+\operatorname{Dr}(\mathrm{p}-\mathrm{q}) \\ & a(q-r)+b(r-p)+c(p-q) \\ & =(A-D)[q-r+r-p+p-q]+D[p(q-r)+q(r-p)+r(p-q)] \\ & =(\mathrm{A}-\mathrm{D})(0)+\mathrm{D}[\mathrm{pq}-\mathrm{pr}+\mathrm{qr}-\mathrm{pq}+\mathrm{rp}-\mathrm{rq}) \\ & =0 \end{aligned}$ | \& $1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
1
1

\hline
\end{tabular}

Class- X Session- 2020-21
 Subject- Mathematics -Standard

 Sample Question Paper

 Sample Question Paper}

Time Allowed: 3 Hours
Maximum Marks: $\mathbf{8 0}$

General Instructions:

1. This question paper contains two parts A and B.
2. Both Part A and Part B have internal choices.

Part - A:

1. It consists three sections-I and II.
2. Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.
3. Section II has 4 questions on case study. Each case study has 5 case-based sub-parts. An examinee is to attempt any 4 out of 5 sub-parts.
Part - B:
4. Question No 21 to 26 are Very short answer Type questions of 2 mark each,
5. Question No 27 to 33 are Short Answer Type questions of 3 marks each
6. Question No 34 to 36 are Long Answer Type questions of 5 marks each.
7. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.

Question No.	Part-A	Marks allocated
	Section-I Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.	
1	If $x y=180$ and $\operatorname{HCF}(x, y)=3$, then find the $\operatorname{LCM}(x, y)$. OR The decimal representation of $\frac{14587}{2^{1} \times 5^{4}}$ will terminate after how many decimal places?	1
2	If the sum of the zeroes of the quadratic polynomial $3 x^{2}-k x+6$ is 3 , then find the value of k.	1

3.	For what value of k, the pair of linear equations $3 x+y=3$ and $6 x+k y=8$ does not have a solution.	1
4.	If 3 chairs and 1 table costs Rs. 1500 and 6 chairs and 1 table costs Rs.2400. Form linear equations to represent this situation.	1
5.	Which term of the A.P. 27, 24, 21,.....is zero? OR In an Arithmetic Progression, if $d=-4, n=7, a_{n}=4$, then find a.	1
6.	For what values of k, the equation $9 x^{2}+6 k x+4=0$ has equal roots?	
7.	Find the roots of the equation $x^{2}+7 x+10=0$ OR For what value(s) of ' a ' quadratic equation $30 a x^{2}-6 x+1=0$ has no real roots?	1
8.	If $P Q=28 \mathrm{~cm}$, then find the perimeter of $\Delta P L M$	1
9.	If two tangents are inclined at 60° are drawn to a circle of radius 3 cm then find length of each tangent. OR $P Q$ is a tangent to a circle with centre O at point P. If $\triangle O P Q$ is an isosceles triangle, then find $\angle O Q P$.	1

	Find the probability of getting a black queen when a card is drawn at random from a well-shuffled pack of 52 cards.	
	Section-II Case study based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark	
17.	Case Study based-1 SUN ROOM The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using - Four clear glass panels, trapezium in shape, all the same size - One tinted glass panel, half a regular octagon in shape Not to scale Scale $1 \mathrm{~cm}=1 \mathrm{~m}$	
(a)	Refer to Top View Find the mid-point of the segment joining the points $J(6,17)$ and $I(9,16)$. (i) $(33 / 2,15 / 2)$ (ii) $(3 / 2,1 / 2)$ (iii) $(15 / 2,33 / 2)$ (iv) $(1 / 2,3 / 2)$	1

(b)	Refer to Top View The distance of the point P from the y-axis is (i) 4 (ii) 15 (iii) 19 (iv) 25	1
(c)	Refer to Front View The distance between the points A and S is (i) 4 (ii) 8 (iii) 16 (iv)20	1
(d)	Refer to Front View Find the co-ordinates of the point which divides the line segment joining the points A and B in the ratio 1:3 internally. (i) $(8.5,2.0)$ (ii) $(2.0,9.5)$ (iii) $(3.0,7.5)$ (iv) $(2.0,8.5)$	1
(e)	Refer to Front View If a point (x, y) is equidistant from the $Q(9,8)$ and $S(17,8)$,then (i) $\mathrm{x}+\mathrm{y}=13$ (ii) $x-13=0$ (iii) $\mathrm{y}-13=0$ (iv) $x-y=13$	1
18.	Case Study Based- 2 SCALE FACTOR AND SIMILARITY SCALE FACTOR A scale drawing of an object is the same shape as the object but a different size. The scale of a drawing is a comparison of the length used on a drawing to the length it represents. The scale is written as a ratio. SIMILAR FIGURES The ratio of two corresponding sides in similar figures is called the scale factor. $\text { Scale factor }=\frac{\text { length in image }}{\text { corresponding length in object }}$ If one shape can become another using Resizing then the shapes are Similar	

	Rotation or Turn Reflection or Flip Translation or Slide Hence, two shapes are Similar when one can become the other after a resize, flip, slide or turn.	
(a)	A model of a boat is made on the scale of $1: 4$. The model is 120 cm long. The full size of the boat has a width of 60 cm . What is the width of the scale model? (i) 20 cm (ii) 25 cm (iii) 15 cm (iv) 240 cm	1

(b)	What will effect the similarity of any two polygons? (i) They are flipped horizontally (ii)They are dilated by a scale factor (iii)They are translated down (iv)They are not the mirror image of one another	1
(c)	If two similar triangles have a scale factor of $\mathrm{a}: \mathrm{b}$. Which statement regarding the two triangles is true? (i)The ratio of their perimeters is $3 \mathrm{a}: \mathrm{b}$ (ii)Their altitudes have a ratio $a: b$ (iii)Their medians have a ratio $\frac{a}{2}: \mathrm{b}$ (iv)Their angle bisectors have a ratio $\mathrm{a}^{2}: \mathrm{b}^{2}$	1
(d)	The shadow of a stick 5 m long is 2 m . At the same time the shadow of a tree 12.5 m high is (i) 3 m (ii) 3.5 m (iii) 4.5 m (iv) 5 m	1
(e)	Below you see a student's mathematical model of a farmhouse roof with measurements. The attic floor, ABCD in the model, is a square. The beams that support the roof are the edges of a rectangular prism, EFGHKLMN. E is the middle of $A T, F$ is the middle of $B T, G$ is the middle of $C T$, and H is the middle of DT. All the edges of the pyramid in the model have length of 12 m .	1

	What is the length of EF, where EF is one of the horizontal edges of the block? (i) 24 m (ii) 3 m (iii) 6 m (iv) 10 m
19.	Case Study Based- 3 Applications of Parabolas-Highway Overpasses/Underpasses A highway underpass is parabolic in shape. Parabola A parabola is the graph that Shape Of Cross Slope: results from $p(x)=a x^{2}+b x+c$ Parabolas are symmetric about a vertical line known as the Axis of Symmetry. The Axis of Symmetry runs through the maximum or minimum point of the parabola which is called the

	Vertex	
(a)	If the highway overpass is represented by $x^{2}-2 x-8$. Then its zeroes are (i) $(2,-4)$ (ii) $(4,-2)$ (iii) $(-2,-2)$ (iv) $(-4,-4)$	
(b)	The highway overpass is represented graphically. Zeroes of a polynomial can be expressed graphically. Number of zeroes of polynomial is equal to number of points where the graph of polynomial (i) Intersects x-axis (ii) Intersects y-axis (iii) Intersects y-axis or x-axis (iv)None of the above	

(c)	Graph of a quadratic polynomial is a (i) straight line (ii) circle (iii) parabola (iv)ellipse
(d)	The representation of Highway Underpass whose one zero is 6 and sum of the zeroes is 0 , is (i) $x^{2}-6 x+2$ (ii) $x^{2}-36$ (iii) $x^{2}-6$ (iv) $x^{2}-3$
(e)	The number of zeroes that polynomial $f(x)=(x-2)^{2}+4$ can have is: (i) 1 (ii) 2 (iii) 0 (iv) 3
20.	Case Study Based- 4 100m RACE A stopwatch was used to find the time that it took a group of students to run 100 m.

(a)	Estimate the mean time taken by a student to finish the race. (i) 54 (ii) 63 (iii) 43 (iv) 50	
(b)	What wiil be the upper limit of the modal class ? (i)20 (ii) 40 (iii) 60 (iv) 80	
(c)	The construction of cummulative frequency table is useful in determining the (i)Mean (ii)Median (iii)Mode (iv)All of the above	
(d)	The sum of lower limits of median class and modal class is (i)60 (ii) 100 (iii) 80 (iv) 140	
(e)	How many students finished the race within 1 minute? (i) 18 (ii) 37 (iii)31 (iv) 8	
	Part -B All questions are compulsory. In case of internal choices, attempt any one.	
21.	3 bells ring at an interval of 4,7 and 14 minutes. All three bell rang at 6 am, when the three balls will the ring together next?	2
22.	Find the point on x-axis which is equidistant from the points ($2,-2$) and $(-4,2)$ OR	2

	$P(-2,5)$ and $Q(3,2)$ are two points. Find the co-ordinates of the point R on $P Q$ such that $P R=2 Q R$	
23.	Find a quadratic polynomial whose zeroes are $5-3 \sqrt{2}$ and $5+3 \sqrt{ } 2$.	2
24.	Draw a line segment $A B$ of length 9 cm . With A and B as centres, draw circles of radius 5 cm and 3 cm respectively. Construct tangents to each circle from the centre of the other circle.	2
25.	If $\tan A=3 / 4$, find the value of $1 / \sin A+1 / \cos A$ OR If $\sqrt{ } 3 \sin \Theta-\cos \Theta=0$ and $0^{\circ}<\theta<90^{\circ}$, find the value of θ	2
26.	In the figure, quadrilateral $A B C D$ is circumscribing a circle with centre O and $A D \perp A B$. If radius of incircle is 10 cm , then the value of x is	2
27.	Prove that $2-\sqrt{ } 3$ is irrational, given that $\sqrt{ } 3$ is irrational.	3
28.	If one root of the quadratic equation $3 x^{2}+p x+4=0$ is $2 / 3$, then find the value of p and the other root of the equation. OR The roots α and β of the quadratic equation $x^{2}-5 x+3(k-1)=0$ are such that $\alpha-$ $\beta=1$. Find the value k.	3

				ction V			
33.	The mode of	$\begin{aligned} & \text { e follow } \\ & \hline 40-50 \\ & \hline 5 \end{aligned}$	$\begin{aligned} & \text { data is } \epsilon \\ & \hline \frac{50-60}{} \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { 7. Find t\| } \\ & \hline 60-70 \\ & \hline 15 \end{aligned}$	$\begin{aligned} & \text { רe missir } \\ & \begin{array}{\|c\|} \hline 70-80 \\ \hline 12 \end{array} \end{aligned}$	frequency x.	3
34.	The two palm trees are of equal heights and are standing opposite each other on either side of the river, which is 80 m wide. From a point O between them on the river the angles of elevation of the top of the trees are 60° and 30°, respectively. Find the height of the trees and the distances of the point O from the trees. OR The angles of depression of the top and bottom of a building 50 meters high as observed from the top of a tower are 30° and 60° respectively. Find the height of the tower, and also the horizontal distance between the building and the tower.						5
35.	Water is flowing through a cylindrical pipe of internal diameter 2cm, into a cylindrical tank of base radius 40 cm at the rate of $0.7 \mathrm{~m} / \mathrm{sec}$. By how much will the water rise in the tank in half an hour?						5
36.	A motorboat covers a distance of 16 km upstream and 24 km downstream in 6 hours. In the same time it covers a distance of 12 km upstream and 36 km downstream. Find the speed of the boat in still water and that of the stream.						5

MARKING SCHEME SQP
 MATHEMATICS (STANDARD)

2020-21
CLASS X

S.NO.	ANSWER	MARKS
	Part-A	
1.	$\begin{aligned} & (\mathrm{LCM})(3)=180 \\ & \mathrm{LCM}=60 \end{aligned}$ OR Four decimal places	$1 / 2$ $1 / 2$ 1
2.	$\begin{aligned} & \alpha+\beta=k / 3 \\ & 3=k / 3 \\ & K=9 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
3.	$\begin{aligned} & \frac{3}{6}=\frac{1}{k} \neq \frac{3}{8} \\ & \frac{3}{2}=\frac{1}{k} \\ & \frac{6}{k} \\ & \mathrm{~K}=2 \end{aligned}$	$1 / 2$ $1 / 2$
4.	Let the cost of 1 chair=Rs. x And the cost of 1 table=Rs. y $\begin{aligned} & 3 x+y=1500 \\ & 6 x+y=2400 \end{aligned}$	
5.	$\begin{aligned} & a_{n}=a+(n-1) d \\ & 0=27+(n-1)(-3) \\ & 30=3 n \\ & n=10 \\ & 10^{\text {th }} \end{aligned}$ OR $\begin{aligned} & a n=a+(n-1) d \\ & 4=a+6 x(-4) \\ & a=-28 \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
6.	$\begin{aligned} & 9 x^{2}+6 k x+4=0 \\ & (6 k)^{2}-4 X 9 X 4=0 \\ & 36 k^{2}=144 \\ & \mathrm{~K}^{2}=4 \\ & \mathrm{~K}= \pm 2 \end{aligned}$	$1 / 2$ $1 / 2$

7.	$\begin{array}{\|l} x^{2}+7 x+10=0 \\ x^{2}+5 x+2 x+10=0 \\ (x+5)(x+2)=0 \\ X=-5, x=-2 \end{array}$ OR $\begin{aligned} & 3 a x^{2}-6 x+1=0 \\ & (-6)^{2}-4(3 a)(1)<0 \end{aligned}$ $12 a>36=>a>3$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
8.	$\begin{aligned} & \mathrm{PQ}=\mathrm{PT} \\ & \mathrm{PL}+\mathrm{LQ}=\mathrm{PM}+\mathrm{MT} \\ & \mathrm{PL}+\mathrm{LN}=\mathrm{PM}+\mathrm{MN} \\ & \mathrm{Perimeter}(\Delta \mathrm{PLM}) \\ & =\mathrm{PL}+\mathrm{LM}+\mathrm{PM} \\ & =\mathrm{PL}+\mathrm{LN}+\mathrm{MN}+\mathrm{PM} \\ & =2(P L+L N) \\ & =2(P L+L Q) \\ & =2 \mathrm{X} 28=56 \mathrm{~cm} \end{aligned}$	$1 / 2$ $1 / 2$
9.	In \triangle PAO $\operatorname{Tan} 30^{\circ}=A O / P A$ $1 / \sqrt{ } 3=3 / P A$ $P A=3 \sqrt{ } 3 \mathrm{~cm}$ OR In $\triangle \mathrm{OPQ}$ $<P+<Q+<O=180^{\circ}$ $2<Q+\angle P=180^{\circ}$ $2<Q+90^{\circ}=180^{\circ}$ $2<Q=90^{\circ}$ $<Q=45^{\circ}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$

	(d)	ii) $x^{2}-36$	
	(e)	iii) 0	
20.	(a)	iii) 43	$1 \times 4=4$
	(b)	iii) 60	
	(c)	ii)Median	
	(d)	iii) 80	
	(e)	iii)31	

	Part-B	
21.	$\begin{aligned} & 4=2 \times 2 \\ & 7=7 \times 1 \\ & 14=2 \times 7 \\ & L C M=2 \times 2 \times 7=28 \end{aligned}$ The three bells will ring together again at 6:28 am	$\begin{aligned} & \hline 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
22.	Let $P(x, 0)$ be a point on X-axis $P A=P B$ $\mathrm{PA}^{2}=\mathrm{PB}^{2}$ $(x-2)^{2}+(0+2)^{2}=(x+4)^{2}+(0-2)^{2}$ $x^{2}+4-4 x+4=x^{2}+16+8 x+4$ $-4 x+4=8 x+16$ $X=-1$ $P(-1,0)$ PR:QR=2:1 $R\left(\frac{1(-2)+2(3)}{2+1}, \frac{1(5)+2(2)}{2+1}\right)$ $R(4 / 3,3)$	$1 / 2$ 1 $1 / 2$
23.	$\begin{aligned} & \text { Sum of zeroes }=5-3 \sqrt{2}+5+3 \sqrt{2}=10 \\ & \text { Product of zeroes }=(5-3 \sqrt{2})(5+3 \sqrt{ } 2)=7 \\ & P(x)=X^{2}-10 x+7 \end{aligned}$	$\begin{aligned} & \hline 1 / 2 \\ & 1 \\ & 1 / 2 \end{aligned}$
24.		Line seg=1/2 Circles=1 /2 Tangents $=1 / 2+$ $1 / 2$

25.	$\begin{aligned} & \tan \mathrm{A}=3 / 4=3 \mathrm{k} / 4 \mathrm{k} \\ & \sin \mathrm{~A}=3 \mathrm{k} / 5 \mathrm{k}=3 / 5, \cos \mathrm{~A}=4 \mathrm{k} / 5 \mathrm{k}=4 / 5 \\ & 1 / \sin \mathrm{A}+1 / \cos \mathrm{A} \\ & =5 / 3+5 / 4 \\ & =(20+15) / 12 \\ & =35 / 12 \\ & \\ & \\ & \\ & \sqrt{3} \sin \Theta=\cos \Theta \\ & \sin \Theta / \cos \Theta=1 / \sqrt{ } 3 \\ & \tan \Theta=1 / \sqrt{ } 3 \\ & \Theta=30^{\circ} \end{aligned}$	$\begin{aligned} & \hline 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
26.	$\angle A=\angle O P A=\angle O S A=90^{\circ}$ Hence, $<S O P=90^{\circ}$ Also, AP=AS Hence, OSAP is a square $A P=A S=10 \mathrm{~cm}$ $C R=C Q=27 \mathrm{~cm}$ $B Q=B C-C Q=38-27=11 \mathrm{~cm}$ $B P=B Q=11 \mathrm{~cm}$ $X=A B=A P+B P=10+11=21 \mathrm{~cm}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
27.	Let 2- $\sqrt{3}$ be a rational number We can find co-prime a and $b(b \neq 0)$ such that $\begin{aligned} & 2-\sqrt{ } 3=a / b \\ & 2-a / b=\sqrt{ } 3 \end{aligned}$ So we get,(2a-b)/b= $\sqrt{3}$ Since a and b are integers, we get $(2 a-b) / b$ is irrational and so $\sqrt{ } 3$ is rational. But $\sqrt{ } 3$ is an irrational number Which contradicts our statement Therefore $2-\sqrt{ } 3$ is irrational	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
28.	$\begin{aligned} & 3 x^{2}+p x+4=0 \\ & 3(2 / 3) 2+p(2 / 3)+4=0 \\ & 4 / 3+2 p / 3+4=0 \\ & P=-8 \\ & 3 x^{2}-8 x+4=0 \\ & 3 x^{2}-6 x-2 x+4=0 \\ & X=2 / 3 \text { or } x=2 \end{aligned}$ Hence, $x=2$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

	 $\alpha+\beta=5 \cdots---(1)$ $\alpha-\beta=1$ Solving (1) and (2) $\alpha=3$ and $\beta=2$ also $\alpha \beta=6$ or $3(k-1)=6$ $k-1=2$ $k=3$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
29.	$\left.\begin{array}{l} \text { Area of } 1 \text { segment }=\begin{array}{rl} \text { area of sector -area of triangle } \\ & =\left(90^{\circ} / 360^{\circ}\right) \pi r^{2}-1 / 2 \times 7 \times 7 \\ & =1 / 4 \times 22 / 7 \times 7^{2}-1 / 2 \times 7 \times 7 \\ & =14 \mathrm{~cm}^{2} \end{array} \\ \text { Area of } 8 \text { segments }=8 \times 14=112 \mathrm{~cm}^{2} \end{array}\right] \begin{array}{r} \text { Area of the shaded region }=14 \times 14-112 \\ =196-112=84 \mathrm{~cm}^{2} \\ \text { (each petal is divided into } 2 \text { segments) } \end{array}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
30.	$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ $\frac{\text { Perimeter }(\triangle A B C)}{\text { Perimeter }(\triangle D E F)}=\frac{A B+B C+C A}{D E+E F+F D}=\frac{A B}{D E}$ $\frac{25}{15}=\frac{9}{X}$ $\mathrm{X}=5.4 \mathrm{~cm}$ $D E=5.4 \mathrm{~cm}$ OR Construction-Draw AM I BC $B D \perp 1 / 3 B C, B M=1 / 2 B C$ In \triangle ABM, $\begin{aligned} \mathrm{AB} & =\mathrm{AM}^{2}+\mathrm{BM}^{2} \\ & =\mathrm{AM}^{2}+(\mathrm{BD}+\mathrm{BM})^{2} \\ & =\mathrm{AM}^{2}+\mathrm{DM}^{2}+\mathrm{BD}^{2}+2 \mathrm{BD} . \mathrm{DM} \\ & =\mathrm{AD}^{2}+\mathrm{BD}^{2}+2 \mathrm{BD}(\mathrm{BM}-\mathrm{BD}) \\ & =\mathrm{AD}^{2}+(\mathrm{BC} / 3)^{2}+2 . \mathrm{BC} / 3 .(\mathrm{BC} / 2-\mathrm{BC} / 3) \\ & =\mathrm{AD}^{2}+2 \mathrm{BC}^{2} / 9 \\ & =\mathrm{AD}^{2}+2 \mathrm{AB} \mathrm{~B}^{2} / 9 \end{aligned}$ Hence, $7 A B^{2}=9 A D^{2}$	1 $1 / 2$ $1 / 2$ 1 $1 / 2$

31.	Class Frequency $0-5$ 12 $5-10$ a $10-15$ 12 $15-20$ 15 $20-25$ b $25-30$ 6 $30-35$ 6 $35-40$ 4 Total 70$\begin{aligned} & 55+a+b=70 \\ & a+b=15 \end{aligned}$$\begin{gathered} \text { median }=+\frac{\frac{N}{2}-c f}{f} \times \mathrm{h} \\ 16=15+\frac{35-24-a}{15} \times 5 \\ 1=(11-\mathrm{a}) / 3 \\ \mathrm{~A}=8 \\ 55+\mathrm{a}+\mathrm{b}=70 \\ 55+8+\mathrm{b}=70 \\ \mathrm{~B}=7 \end{gathered}$	Cumulative frequency 12 $12+\mathrm{a}$ $24+\mathrm{a}$ $39+\mathrm{a}$ $39+\mathrm{a}+\mathrm{b}$ $45+\mathrm{a}+\mathrm{b}$ $51+\mathrm{a}+\mathrm{b}$ $55+\mathrm{a}+\mathrm{b}$	1/2
32.	Let $\mathrm{AB}=$ candle C and D are coins $\text { Tan } 60^{\circ}=\mathrm{AB} / \mathrm{BC}=\mathrm{h} / \mathrm{b}$ $\sqrt{3}=\mathrm{h} / \mathrm{b}$ $\mathrm{H}=\mathrm{b} \sqrt{3}$ \qquad $\begin{equation*} \operatorname{Tan} 30^{\circ}=\mathrm{AB} / \mathrm{BD}=\mathrm{h} / \mathrm{a} \tag{1} \end{equation*}$ $1 / \sqrt{3}=\mathrm{h} / \mathrm{a}$ $\begin{equation*} \mathrm{H}=\mathrm{a} / \sqrt{ } 3 \tag{2} \end{equation*}$ Multiplying (1) and (2), we get $\begin{aligned} & H^{2}=b \sqrt{3} X^{a} a \sqrt{3} \\ & H^{2}=b a \\ & H=\sqrt{a b} m \end{aligned}$		$1 / 2$ $1 / 2$

33.	$\begin{aligned} & \text { Mode }=I+\frac{f 1-f 0}{2 f 1-f 2-f 0} \times h \\ & \quad 67=60+\frac{15-x}{30-12-x} \times 10 \\ & \quad 7=\frac{15-x}{18-x} \times 10 \\ & 7 \times(18-\mathrm{x})=10(15-\mathrm{x}) \\ & 126-7 \mathrm{x}=150-10 \mathrm{x} \\ & 3 \mathrm{x}=150-126 \\ & 3 \mathrm{x}=24 \\ & \mathrm{X}=8 \end{aligned}$	$1 / 2$ $1 / 2$
34.	 Let BD=river AB=CD=palm trees=h $B O=x$ OD=80-x In $\triangle \mathrm{ABO}$, $\operatorname{Tan} 60^{\circ}=h / x$ $\sqrt{ } 3=h / x$ $H=\sqrt{3} x$ In \triangle CDO, $\operatorname{Tan} 30^{\circ}=\mathrm{h} /(80-\mathrm{x})$ $1 / \sqrt{3}=h /(80-x)$ Solving (1) and (2), we get $\begin{align*} & X=20 \tag{2}\\ & H=\sqrt{3 x}=34.6 \end{align*}$ the height of the trees $=\mathrm{h}=34.6 \mathrm{~m}$ $\begin{aligned} & \mathrm{BO}=x=20 \mathrm{~m} \\ & \mathrm{DO}=80-x=80-20=60 \mathrm{~m} \end{aligned}$	1 $1 / 2$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Let \(A B=\) Building of height 50 m \\
\(R T=\) tower of height \(=\mathrm{hm}\) \\
\(B T=A S=x m\) \\
\(\mathrm{AB}=\mathrm{ST}=50 \mathrm{~m}\) \\
RS=TR-TS \(=(h-50) \mathrm{m}\) \\
In \(\triangle \mathrm{ARS}, \tan 30^{\circ}=\) RS \(/\) AS
\[
\begin{equation*}
1 / \sqrt{3}=(h-50) / x \tag{1}
\end{equation*}
\] \\
In \(\triangle \mathrm{RBT}, \tan 60^{\circ}=\mathrm{RT} / \mathrm{BT}\)
\[
\begin{equation*}
\sqrt{3}=h / x \tag{2}
\end{equation*}
\] \\
Solving (1) and (2), we get
\[
h=75
\] \\
from (2)
\[
\begin{aligned}
\mathrm{x} \& =\mathrm{h} / \sqrt{3} \\
\& =75 / \sqrt{3} \\
\& =25 \sqrt{ } 3
\end{aligned}
\] \\
Hence, height of the tower=h=75m \\
Distance between the building and the tower \(=25 \sqrt{ } 3=43.25 \mathrm{~m}\)
\end{tabular} \& 1

$11 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$11 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$

\hline 35. \& | For pipe, $r=1 \mathrm{~cm}$ |
| :--- |
| Length of water flowing in $1 \mathrm{sec}, \mathrm{h}=0.7 \mathrm{~m}=7 \mathrm{~cm}$ Cylindrical Tank, $R=40 \mathrm{~cm}$, rise in water level=H |
| Volume of water flowing in $1 \mathrm{sec}=\Pi \mathrm{r}^{2} \mathrm{~h}=\Pi \mathrm{x} 1 \mathrm{x} 1 \mathrm{x} 70$ $=70 П$ |
| Volume of water flowing in $60 \mathrm{sec}=70 П \times 60$ |
| Volume of water flowing in 30 minutes $=70 П \times 60 \times 30$ |
| Volume of water in Tank $=\Pi r^{2} \mathrm{H}=\Pi \times 40 \times 40 \mathrm{xH}$ |
| Volume of water in Tank= Volume of water flowing in 30 minutes $\begin{aligned} \Pi \times 40 \times 40 \times H & =70 \Pi \times 60 \times 30 \\ \mathrm{H} & =78.75 \mathrm{~cm} \end{aligned}$ | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 \\
& 1 / 2 \\
& 1 / 2 \\
& \\
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\]

\hline
\end{tabular}

36.	Let speed of the boat in still water $=x \mathrm{~km} / \mathrm{hr}$, and Speed of the current $=y \mathrm{~km} / \mathrm{hr}$ Downstream speed $=(x+y) \mathrm{km} / \mathrm{hr}$ Upstream speed $=(x-y) \mathrm{km} / \mathrm{hr}$ $\begin{equation*} \frac{24}{x+y}+\frac{16}{x-y}=6 \tag{1} \end{equation*}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
	$\begin{equation*} \frac{36}{x+y}+\frac{12}{x-y}=6 \tag{2} \end{equation*}$	$1 / 2$
	Let $\frac{1}{x+y}=\mathrm{u}$ and $\frac{1}{x-y}=\mathrm{v}$	
	Put in the above equation we get, $24 u+16 v=6$ Or, $12 u+8 v=3$... (3) $36 u+12 v=6$	$1 / 2$
	Or, $6 u+2 v=1$ Multiplying (4) by 4, we get, $\begin{equation*} 24 u+8 v=4 v \tag{4} \end{equation*}$	
	Subtracting (3) by (5), we get, $\begin{align*} & 12 u=1 \tag{5}\\ & \Rightarrow u=1 / 12 \end{align*}$	$1 / 2$
	Putting the value of u in (4), we get, $v=1 / 4$ $\Rightarrow \frac{1}{x+y}=\frac{1}{12} \text { and } \frac{1}{x-y}=\frac{1}{4}$ $\Rightarrow x+y=12 \text { and } x-y=4$	$1 / 2$
	Thus, speed of the boat in still water $=8 \mathrm{~km} / \mathrm{hr}$,	1/2
	Speed of the current $=4 \mathrm{~km} / \mathrm{hr}$	$1 / 2$

KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION FIRST PRE-BOARD EXAMINATION - 2020-21

CLASS-X
 MATHEMATICS - BASIC (241)

Time Allowed:

Maximum Marks: 80

1. For Reading the Question Paper: 15 Minutes
2. For Writing Answers: 3 Hours

General Instructions:

1. This Question Paper contains two parts A and B.
2. Both Part A and Part B have internal choices.

Part A

1. It consists two sections I and II.
2. Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.
3. Section II has 4 questions on case study. Each case study has 5 case-based sub-parts.

An examinee is to attempt any four out of 5 sub-parts.

Part B

1. Question No. 21 to 26 are very short answer type questions of 2 marks each.
2. Question No. 27 to 33 are short answer type questions of 3 marks each.
3. Question No. 34 to 36 are long answer type questions of 5 marks each.
4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1question of 5 marks.

Q.NO	Part-A (Section-I) (1-mark each)	MM
1	Write the smallest number that is divisible by all the numbers from 1 to 5 (both inclusive). OR Express 135 as the product of primes numbers.	1
2	Write a quadratic polynomial, sum and product of whose zeroes are -3 and 4 Respectively.	1
3	On comparing the ratio of the coefficients, find out whether the pair of linear equations $x+3 y=11$ and $4 x+12 y=22$ is Consistent or Inconsistent.	1
4	What will be the value of k If the lines given by $3 x+2 k y=12$ and $2 x+4 y=8$ are parallel.	1
5	Find the roots for quadratic equation: $\mathrm{x}^{2}-4=0$	1
6	Find the values of k for which the quadratic equation $2 \mathrm{x}^{2}-\mathrm{kx}+\mathrm{k}=0$ has equal roots. OR The area of a rectangular sand art is 10 square metre. The length of the sand art (in metres) is one more than twice its breadth. Write the quadratic equation for the given condition.	1
7	Write the $10^{\text {th }}$ term of the AP: $5,8,11,14, \ldots \ldots \ldots \ldots$ OR If the common difference of an AP is 5 , then what is the value of $\mathbf{a}_{18}-\mathbf{a}_{13}$	1

8		Find the perpendicular distance of the point $\mathrm{P}(2,3)$ from the x-axis.	1
9		The value of $\left(\sin 30^{\circ}+\cos 30^{\circ}\right)-\left(\sin 60^{\circ}+\cos 60^{\circ}\right)$	1
10		If $\triangle \mathrm{ABC}$ is right angled at C , then find the value of $\mathrm{COS}(\mathrm{A}+\mathrm{B})$. OR For $\operatorname{Sin} \mathrm{A}=\operatorname{Cos} \mathrm{A}$ find the value of angle A where $0^{0}<\mathrm{A}<90^{\circ}$	1
11		The lengths of the diagonals of a rhombus are 16 cm and 12 cm . Then, what will be the length of the side of the rhombus.	1
12		A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $\mathrm{OQ}=12 \mathrm{~cm}$. Find the Length PQ .	1
13		If TP and TQ are the two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}$, then find the value of $\angle \mathrm{PTQ}$. OR From an exterior point T, the length of the tangent TQ to a circle is 24 cm and the distance of T from the centre O is 25 cm . Find the radius of the circle.	1
14		To divide a line segment AB in the ratio 5:7, a ray AX is drawn so that $\angle \mathrm{BAX}$ is an acute angle and then at equal distances points are marked on the ray AX what will be the minimum number of these points marked.	1
15		If the area of a circle is $154 \mathrm{~cm}^{2}$, then find its circumference.	1
16		If the circumference of a circle is equal to perimeter of a square, then find the area of square in term of π and radius r.	1
Part-A Section- II, (1-mark each) Case study -based questions are compulsory. Attempt any 4 sub parts from each questions. Each question carries (1 mark)			
17		Raju has seen that his uncle is working on computer, he imitates the shape from computer on a graph paper. Answer the following questions below.	
	1	Name the shape Raju's uncle drawn. a) Spiral b) Ellipse c) Linear d) Parabola	1
	2	Degree of quadratic polynomial is a) 3 b) 4 c) 2 d) 1	1
		5 is an example of a) Zero polynomial b) constant polynomial c) linear polynomial d) variable	1
	4	The shape drawn on graph may represent a) $-x-2$ b) $y=-x+2$ c) $y=x^{2}-x-2$ d) $y=$ x	1
	5	The number of zeroes of the polynomial (shape drawn) a) 2 b) 3 c) 4 d) 0	1

| 18 | | A painter is painting triangular designs on a stadium wall is as shown in
 adjoining figure. |
| :--- | :--- | :--- | :--- | :--- |

		The two triangles are similar by, which criterion of similarity. a) AA b) SSS c) QMF d) PMQ	1		
		The height of pole (the value of h) is a) 10 ft b) 20 ft c) 15 ft d) none of these	1		
		In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides." This statement is known as a) Thales theorem b) Pythagoras theorem c) similarity theorem d) none of these	1		
	5	What is the ratio, you found between two corresponding sides in the condition given above a) $5: 24$ b) $1: 3$ c) $12: 5$ d) $3: 5$	1		
Part-B (Section-I) (2 marks each) All questions are compulsory. In case of internal choices, attempt any one.					
21		Find the HCF of 96 and 404 by the prime factorisation method. also find their LCM.	2		
22		Find the zeroes of the quadratic polynomial $\mathrm{x}^{2}+7 x+10$, and verify The relationship between the zeroes and the coefficients.	2		
23		Find the point on the x-axis which is equidistant from $(2,-5)$ and $(-2,9)$. OR Find the values of y for which the distance between the points $\mathrm{P}(2,-3)$ and $\mathrm{Q}(10$, y) is 10 units.	2		
24		Given $15 \cot \mathrm{~A}=8$, find $\sin \mathrm{A}$ and $\sec \mathrm{A}$. OR If $\cos \mathrm{A}=\frac{12}{13}$, find $\sin \mathrm{A}$ and $\tan \mathrm{A}$	2		
25		A quadrilateral ABCD is drawn to circumscribe a circle . Prove that $A B+C D=A D+B C$.	2		
26		Draw a line segment of length 10 cm and divide it in the ratio 3:2 . Measure the two parts.	2		
Part-B (Section-II) (3 marks each) All questions are compulsory. In case of internal choices, attempt any one					
27		Prove that $\sqrt{2}$ is an irrational number.	3		
28		The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm , Find the other two sides. OR Find the values of k for each of the following quadratic equations, so that they have two equal roots : $\boldsymbol{k x}(\boldsymbol{x}-\mathbf{2})+\mathbf{6}=\mathbf{0}$	3		
29		Prove that $\quad(\operatorname{cosec} A-\cot A)^{2}=\frac{1-\cos A}{1+\cos A}$	3		
30		An observer 1.5 m tall is 28.5 m away from a chimney. The angle of elevation of the top of the chimney from her eyes is 45°. What is the height of the chimney?	3		
31		In fig (1) $\mathrm{DE} \\| \mathrm{AC}$ and $\mathrm{DF} \\| \mathrm{AE}$. Prove that $\frac{B F}{F E}=\frac{B E}{E C}$ (see figure adjoined)	3		

MARKING SCHEME
 KENDRIYA VIDYALAYA SANGATHAN AHMEDABAD REGION
 FIRST PRE-BOARD EXAMINATION - 2020-21
 CLASS-X
 MATHEMATICS - BASIC (241)

\begin{tabular}{|c|c|c|}
\hline \& \& \\
\hline 25 \& \begin{tabular}{l}
CORRECT PROOF OF AB \(+C D=A D+B C\) \\
(i) \(D R=D S\) \\
(ii) \(B P=B Q\) \\
(iii) \(\mathrm{AP}=\mathrm{AS}\) \\
(iv) \(C R=C Q\) \\
Since they are tangents on the circle from points \(D, B, A\), and \(C\) respectively. using theorem 10.2 adding the LHS and RHS of the above equations we get, rearranging them we get,
\[
(D R+C R)+(B P+A P)=(C Q+B Q)+(D S+A S)
\] \\
By simplifying, \\
\(A D+B C=C D+A B\)
\end{tabular} \& 1
1 \\
\hline 26 \& For Correct construction ,parts will be of 6 and 4 cm \& 2 \\
\hline \multicolumn{3}{|c|}{PART-B (SECTION-II, 3-MARKS EACH)} \\
\hline 27 \& \begin{tabular}{l}
Proof : Let us assume, to the contrary, that \(\sqrt{2}\) is rational. \\
So, we can find integers r and \(\mathrm{s}(\neq 0)\) such that \(\sqrt{2}=\frac{r}{s}\). \\
Suppose \(r\) and \(s\) have a common factor other than 1 . Then, we divide by the common factor to get \(\sqrt{2}=\frac{a}{b}\), where a and b are coprime. \\
So, \(b \sqrt{2}=a\). \\
Squaring on both sides and rearranging, we get \(2 b^{2}=a^{2}\). Therefore, 2 divides \(a^{2}\). Now, by Theorem 1.3, it follows that 2 divides a. \\
So, we can write \(\mathrm{a}=2 \mathrm{c}\) for some integer c . \\
Substituting for \(a\), we get \(2 b^{2}=4 c^{2}\), that is, \(b^{2}=2 c^{2}\). \\
This means that 2 divides \(\mathrm{b}^{2}\), and so 2 divides b (again using Theorem 1.3 with \(\mathrm{p}=2\)). Therefore, \(a\) and \(b\) have at least 2 as a common factor. \\
But this contradicts the fact that a and b have no common factors other than 1 . \\
This contradiction has arisen because of our incorrect assumption that \(\sqrt{2}\) is rational. \\
So, we conclude that \(\sqrt{2}\) is irrational.
\end{tabular} \& 1

1

1

\hline 28 \& ```
Framing and solving equations using Pythagoras theorem
Finding base $=12 \mathrm{~cm}$, altitude $=5 \mathrm{~cm}$
OR
$\mathrm{K}=6$ by using Discriminant $=0$

``` & 2
1 \\
\hline 29 & \[
\begin{aligned}
& \text { Proving }(\operatorname{cosec} A-\cot A)^{2}=\frac{1-\cos A}{1+\cos A} \text { by application } \\
& \text { LHS }(\operatorname{cosec} A-\cot A)^{2} \\
& =(\operatorname{cosec} A-\cot A)^{2} \\
& =\left(\frac{1}{\sin A}-\frac{\cos A}{\sin A}\right)^{2} \\
& =\left(\frac{1-\cos A}{\sin A}\right)^{2} \\
& =\frac{(1-\cos A)^{2}}{\sin ^{2} A} \\
& =\frac{(1-\cos A)^{2}}{1-\cos 2} \\
& =\frac{(1-\cos A)(1-\cos A)}{(1-\cos A)(1+\cos A)} \\
& =\frac{(1-\cos A)}{(1+\cos A)}
\end{aligned}
\] & 1

1
1
1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline 30 & writing and applying correct trigonometric ratio Correct calculation (Solving and finding) Correct answer the height of the chimney \(=30 \mathrm{~m}\) & \begin{tabular}{l}
1 \\
1 \\
1 \\
\hline
\end{tabular} \\
\hline 31 & \begin{tabular}{l}
Proof of \(\frac{B F}{F E}=\frac{B E}{E C}\) by using basic proportionality theorem correctly \\
OR \\
Proof of EF \| QR by using basic proportionality theorem \\
For given and To prove \\
For Correct proof \\
For correct answer
\end{tabular} & 1
1
1 \\
\hline 32 & \begin{tabular}{l}
Calculating area of triangle .using herons formula, \(\mathrm{AB}=15 \mathrm{~cm}\) and \(\mathrm{AC}=13 \mathrm{~cm}\) \\
For using herons formula \\
For correct calculation \\
For correct answer
\end{tabular} & 1
1
1 \\
\hline 33 & \begin{tabular}{l}
The area of quadrant \(=\frac{77}{8}\) square cm by correct application of formula \\
Given: Cercumference \(=2 \pi r=22\)
\[
\begin{aligned}
2 \times \frac{22}{7} \times r & =22 \\
r & =\frac{22 \times 7}{22 \times 2} \\
r & =\frac{7}{2} \mathrm{~cm}
\end{aligned}
\] \\
we know that for quadrant of circle , \(\theta=90^{\circ}\) \\
Area of quadrant \(=\frac{\theta}{360^{0}} \times \pi r^{2}\) \\
Area of quadrant \(=\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\) \\
Area of quadrant \(=\frac{77}{8} \mathrm{~cm}^{2}\)
\end{tabular} & 1

1

1 \\
\hline & PART-B (SECTION-III, 5-MARKS EACH ) & \\
\hline 34 & \begin{tabular}{l}
Let the ten's and the unit's digits in the first number be \(x\) and \(y\), respectively. So, the first number may be written as \(10 x+y\) in the expanded form When the digits are reversed,
\[
10 y+x
\] \\
According to the given condition.
\[
\begin{equation*}
(10 x+y)+(10 y+x)=66 \tag{1}
\end{equation*}
\] \\
i.e., \(11(x+y)=66\) \\
i.e., \(x+y=6\).. \(\qquad\) \\
We are also given that the digits differ by 2 , therefore, \\
either \(x-y=2\). \(\qquad\) \\
or \(y-x=2\). \(\qquad\) \\
If \(x-y=2\), then solving (1) and (2) by elimination, we get \(x=4\) and \(y=2\). In this case, we get the number 42. \\
If \(y-x=2\), then solving (1) and (3) by elimination, we get \(x=2\) and \(y=4\). In this case, we get the number 24. \\
Thus, there are two such numbers 42 and 24 .
\end{tabular} & 2
2
2

1 \\
\hline 35 & \begin{tabular}{l}
Let \(A B\) be the height of statue. \\
\(D\) is the point on the ground from where the elevation is taken. \\
To Find: Height of pedestal \(=B C=A C-A B\)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
From figure, \\
In right triangle \(B C D\), \\
\(\tan 45^{\circ}=B C / C D\) \\
\(B C=C D\) \\
Again, \\
In right \(\triangle A C D\), \\
\(\tan 60^{\circ}=\mathrm{AC} / \mathrm{AD}\) \\
\(B C=1.6 /(\sqrt{ } 3-1) \mathrm{m}\). \\
Thus, the height of the pedestal is \(0.8(\sqrt{ } 3+1) \mathrm{m}\). \\
OR \\
Let \(C D\) be the height of the tower. \\
\(A B\) be the height of the building. \\
\(B C\) be the distance between the foot of the building and the tower. \\
Elevation 30 degree and 60 degree ( from the tower and the building respectively). \\
In right \(\triangle B C D\), \\
\(\tan 60^{\circ}=C D / B C\) \\
\(B C=50 / V 3\) \\
Again, \\
In right \(\triangle A B C\), \\
\(\tan 30^{\circ}=A B / B C\) \\
Thus, the height of the building is \(50 / 3 \mathrm{~m}\). \\
the height of the building \(=16 \frac{2}{3} \mathrm{~m}\)
\end{tabular} & 2

2
1 \\
\hline 36 & ```
Area of square \(A B C D=196 \mathrm{sq} \mathrm{cm}\)
Diameter of each circle \(=14 \mathrm{~cm}\)
Radius \(=7 \mathrm{~cm}\)
the area of the shaded region= area of square - area of all circles
= 196-154
\(=42 \mathrm{~cm}^{2}\)
``` & 2
2
1 \\
\hline
\end{tabular}

\title{
KENDRIYA VIDYALAYA SANGATHAN
}

Ahmedabad Region
I Pre-Board Examination 20-21
Class X Mathematics

\section*{Time Allowed:}

Maximum Marks: \(\mathbf{8 0}\)
1. for Reading the Question Paper: 15 Minutes
2. for Writing Answers: 3 Hours

\section*{General Instructions:}
1. This Question Paper contains two parts \(A\) and \(B\).
2. Both Part A and Part B have internal choices.

\section*{Part A}
1. It consists two sections I and II.
2. Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.
3. Section II has 4 questions on case study. Each case study has 5 case-based subparts. An examinee is to attempt any 4 out of 5 sub-parts.

\section*{Part B}
1. Question No. 21 to 26 are very short answer type questions of 2 marks each.
2. Question No. 27 to 33 are Short answer Type questions of 3 marks each.
3. Question No. 34 to 36 are long answer type questions of 5 marks each.
4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Questio \\
n No.
\end{tabular} & \begin{tabular}{l}
Section I has \(\mathbf{1 6}\) questions of \(\mathbf{1}\) mark each. Internal choice is \\
provided in \(\mathbf{5}\) questions.
\end{tabular} & \begin{tabular}{l}
Marks \\
allocated
\end{tabular} \\
\hline 1. & \begin{tabular}{l}
The HCF of two numbers is 18 and their product is 12960. Find their \\
LCM.
\end{tabular} & \(\mathbf{1}\) \\
\hline Without actual division, show that the following rational numbers is \\
a terminating decimal. Express in decimal form. \(\frac{19}{3125}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
OR
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{If \((2, p)\) is the midpoint of the line segment joining the points \(A(6,-5)\) and \(B(-2,11)\) find the value of \(p\).} & \\
\hline 9. & Evaluate the following: \(\sin ^{2} 30^{\circ}-\cos ^{2} 45^{\circ}+\) & \(\tan ^{2} 60^{\circ}\) & 1 \\
\hline 10. & \(\tan \theta=\frac{3}{4}\), find the value of \(\cos \theta+\frac{\sin \theta}{\cos \theta}\) - & \(\sin \theta\) & 1 \\
\hline 11. & In a triangle \(\mathrm{ABC}, \mathrm{D}\) and E are points on the respectively such that \(D E / / B C\), If \(\frac{A D}{D B}=\) find \(A E\). & sides \(A B\) and \(A C\) and \(A C=18 \mathrm{~cm}\), & 1 \\
\hline 12. & In the given figure, O is the centre of a circle, \(A B\) is a chord and \(A T\) is the tangent at \(A\). If \(\angle A O B=100^{\circ}\), then calculate \(\angle B A T\). & & 1 \\
\hline 13. & In the given figure, \(\mathrm{AP}, \mathrm{AQ}\) and BC are tangents to the circle. If \(A B=5 \mathrm{~cm}, A C=6\) cm and \(\mathrm{BC}=4 \mathrm{~cm}\), then calculate the length of \(A P\) (in cm). & & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & In the given figure, the sides \(A B, B C\) and \(C A\) of a triangle \(A B C\) touch a circle at \(P, Q\) and \(R\) respectively. If \(P A=4 \mathrm{~cm}, \mathrm{BP}=3\) cm and \(A C=11 \mathrm{~cm}\), find the length of \(B C\) (in cm). & \\
\hline 14. & If a line-segment \(A B\) of length 7.8 cm is divided in ratio \(5: 8\) at point \(P\). What will be actual length of \(P B\) ? & 1 \\
\hline 15. & The circumference of a circle is 22 cm . Calculate the area of its quadrant (in \(\mathrm{cm}^{2}\)) & 1 \\
\hline 16. & If \(\pi=22 / 7\), calculate the distance (in meters) covered by a wheel of diameter 35 cm , in one revolution. & 1 \\
\hline & \begin{tabular}{l}
Section-II \\
Case study based questions are compulsory. Attempt any four subparts of each question. Each subpart carries 1 mark
\end{tabular} & \\
\hline 17. & \begin{tabular}{l}
Case Study based-1 \\
A box is created from a sheet of cardboard 25 inch on a side by cutting a square from each corner and folding up the sides .Let x represent the length of the sides of the squares removed from each corner .If area of the sides of the box is 13 square inch, give the answer of the following questions.
\end{tabular} & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline (i) & \begin{tabular}{l}
the volume of the box can be expressed by \\
(a) \(x^{2} \times 25\) \\
(b) \(x^{3}\) \\
(c) \(4 x^{3}+100 x^{2}+625\) \\
(d) \(4 x^{3}-100 x^{2}+625 x\)
\end{tabular} & \\
\hline (ii) & \begin{tabular}{l}
If area of the sides (walls) of the box are 12 square inch then value of \(x\) is \\
(a) 13 inch \\
(b) 1 inch \\
(c) 0.5 inch \\
(d) 24 inch
\end{tabular} & \\
\hline (iii) & \begin{tabular}{l}
the area of the bottom of the box is \\
(a)625 sq. Inch \\
(b) 576 sq. Inch \\
(c)529 sq. Inch \\
(d) 169 sq. Inch
\end{tabular} & \\
\hline (iv) & \begin{tabular}{l}
the volume of the box is \\
(a) \(24 \times 24 \times 0.5\) \\
(b) \(24 \times 24 \times 1\) \\
(c) \(13 \times 13 \times 12\) \\
(d) \(12 \times!2 \times 13\)
\end{tabular} & \\
\hline (v) & \begin{tabular}{l}
The graph of the volume represented, will intersect the X -axis in point(s) \\
(a) Zero \\
(b)Two \\
(c)One \\
(d) Three
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \\
\hline 18. & \begin{tabular}{l}
Case Study based-2 \\
Rashi goes to grocery shop for purchasing some glass for gifting in a party. She observed the jars are arranged one above the other in specific pattern. Observe the figure and on the bases of the figure give answers of the following questions.
\end{tabular} \\
\hline (i) & \begin{tabular}{l}
If the arrangement of jars in numbers form the Arithmetic Progression, then total number of jars in first three rows from the top are \(\qquad\) \\
(a) 18 \\
(b) 24 \\
(c) 57 \\
(d) 35
\end{tabular} \\
\hline (ii) & \begin{tabular}{l}
If there are hundred such rows . then how many jars will be in the \(56^{\text {th }}\) row \\
(a) 200 \\
(b) 168 \\
(c) 300 \\
(d) 303
\end{tabular} \\
\hline (iii) & \begin{tabular}{l}
If on the top, the shopkeeper puts two more rows having jars 2 and 1 respectively, will it be an arithmetic sequence? \\
(a) Yes, the common difference between each row is the same. \\
(b) No, the common difference between each row is not the same \\
(c) Yes, because the common difference between each row is not same \\
(d) No, because the common difference between each row is the same
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline (iv) & \begin{tabular}{l}
Rashi asked the shopkeeper to pack it in the same fashion as it was displayed shopkeeper used a box of dimensions as shown. \\
Front face of the box is an equilateral triangle, the capacity of the box used \(\qquad\) \\
(a) \(480 \times \sqrt{ } 3\) cubic cm \\
(b) \(240 \mathrm{X} \sqrt{ } 3\) cubic cm \\
(c) \(2880 \times \sqrt{ } 3\) cubic cm \\
(d) \(1440 \times \sqrt{ } 3\) cubic cm
\end{tabular} & \\
\hline (v) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Rashi asked the shopkeeper to wrap it with gift paper, the total surface area of the paper used \(\qquad\) \\
(a) \(\sqrt{ } 3 \times 12 \times 24+30 \times 24\) Sq.cm \\
(b) \(3.14 \times 12 \times 24+30 \times 24\) Sq.cm \\
(c) \(1.41 \times 12 \times 24+30 \times 24\) Sq.cm \\
(d) \(\sqrt{ } 3 \times 24 \times 24+30 \times 24\) Sq.cm
\end{tabular}} \\
\hline 19. & \begin{tabular}{l}
Case Study based-3 \\
Two friends Seema and Aditya work in the same office at Delhi. In the Christmas vacations, both decided to go to their hometowns represented by Town \(A\) and Town \(B\) respectively in the figure given below. Town A and Town B are connected by trains from the same station C (in the given figure) in Delhi. Based on the given situation, answer the following questions:
\end{tabular} & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \\
\hline (i) & \begin{tabular}{l}
Which statement is true \\
(a) Seema travel more distance than Aditya to reach to their hometown. \\
(b) Seema travel less distance than Aditya to reach to their hometown. \\
(c) seema and Aditya travel equal distance to reach to their hometown. \\
(d) seema travels doubble distance than that of by aditya
\end{tabular} \\
\hline (ii) & \begin{tabular}{l}
Seema and Aditya planned to meet at a location \(D\) which is middle of Town \(A\) and Town \(B\). \(D\) is mid-point of \(A B\). Coordinate of point \(D\) is \\
(a) \((5,9)\) \\
(b) \((-5,-9)\) \\
(c) \((2.5,4.5)\) \\
(d) \((2,4)\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline (iii) & \begin{tabular}{l}
What type of triangle is formed by joining the points represented by \\
A, B and C. \\
(a) Scalene triangle \\
(b) Obtuse angled triangle. \\
(c) Isosceles right angled triangle. \\
(d) None of the above
\end{tabular} & \\
\hline (iv) & \begin{tabular}{l}
What is the distance of station C from the origin \\
(a) 4 unit \\
(b) \(4 \sqrt{ } 2\) unit \\
(c) 4.2 unit \\
(d) 16 unit
\end{tabular} & \\
\hline (v) & \begin{tabular}{l}
The area of the triangle formed by joining the points represented by \\
A, B and C. \\
(a) 17 sq. Unit \\
(b) \(\sqrt{\text { V } 68 \text { sq. Unit }}\) \\
(c) 34 sq. Unit \\
(d) 10 sq. Unit
\end{tabular} & \\
\hline 20. & \begin{tabular}{l}
Case Study based-4 \\
Teacher gives an activity to the students to measure the height of \\
the tree and ask them who will do this activity. Anju accepts the \\
challenges .she places a mirror on level ground to determine the \\
height of a tree. She stands at a certain distance so that she can \\
see the top of the tree reflected from the mirror. Anju's eye level is \\
1.8 m above ground, the distance of Anju and the tree from the \\
mirror are 1.5 m and 2.5 m respectively. Answer the question below
\end{tabular} & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline (iv) & \begin{tabular}{l}
If \(\triangle A M B\) and \(\triangle C D M\) are similar and \(C D=6 \mathrm{~cm}, M D=8 \mathrm{~cm}\), and \(B M=24 \mathrm{~cm}\) then \(\mathrm{AB}=\) ? \\
(a) 17 cm \\
(b) 18 cm \\
(c) 12 cm \\
(d) 24 cm
\end{tabular} & \\
\hline (v) & \begin{tabular}{l}
In \(\triangle \mathrm{AMB}\) if \(\angle \mathrm{BAM}=30^{\circ}\), then \(\angle \mathrm{MCD}=\) ? \\
(a) \(40^{\circ}\) \\
(b) \(45^{\circ}\) \\
(c) \(60^{\circ}\) \\
(d) \(30^{\circ}\)
\end{tabular} & \\
\hline & \begin{tabular}{l}
Part B \\
All questions are compulsory. In case of internal choices, attempt any one.
\end{tabular} & \\
\hline & Section III & \\
\hline 21. & Three measuring rods are \(64 \mathrm{~cm}, 80 \mathrm{~cm}\) and 96 cm in length. Find the least length of cloth that can be measured an exact number of times, using any of the rods. & 2 \\
\hline 22. & If the sum of the zeroes of the quadratic polynomial \(x^{2}+2 x+3 k\) is equal to the product of its zeroes, then \(\mathrm{k}=\) ? & 2 \\
\hline 23. & \begin{tabular}{l}
In what ratio is the line segment joining the points \(\mathrm{A}(-2,-3)\) and \(B(3,7)\) divided by the \(y\) - axis? Also, find the coordinates of the point of division. \\
OR \\
Show that the points \(A(3,1), B(0,-2), C(1,1)\) and \(D(4,4)\) are the vertices of parallelogram \(A B C D\).
\end{tabular} & 2 \\
\hline 24. & If \((1+\cos A)(1-\cos A)=3 / 4\), find the value of \(\sec A\). & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & OR
Solve the equation for \(\theta: \cos ^{2} \theta /\left(\cot ^{2} \theta-\cos ^{2} \theta\right)=3\) & \\
\hline 25. & Two concentric circles are of radii 7 cm and rcm respectively, where \(\mathrm{r}>7\). A chord of the larger circle, of length 48 cm , touches the smaller circle. Find the value of \(r\). & 2 \\
\hline 26. & Draw a line segment \(A B\) of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking \(B\) as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle. & 2 \\
\hline & Section IV & \\
\hline 27. & Prove that \(\sqrt{5}\) is irrational number. & 3 \\
\hline 28. & \begin{tabular}{l}
The speed of a boat in still water is \(8 \mathrm{~km} / \mathrm{hr}\). It can go 15 km upstream and 22 km downstream is 5 hours. Find the speed of the stream. \\
OR \\
In a class test, the sum of the marks obtained by P in mathematics and science is 28 . Had he got 3 more marks in mathematics and 4 marks less in science, the product of marks obtained in the two subjects would have been 180. Find the marks obtained by him in the two subjects separately.
\end{tabular} & 3 \\
\hline 29. & Prove that: \((1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=2\). & 3 \\
\hline 30. & The length of a string between a kite and a point on the ground is 90 metres. If the string makes an angle with the ground level such that \(\tan \emptyset=15 / 8\), how high is the kite? Assume that there is no slack in the string. & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{31.} & & & \\
\hline & \(\triangle A B C\), if \(A D\) is the median, then show that \(A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)\) & & \multirow[t]{3}{*}{3} \\
\hline & OR & & \\
\hline & \begin{tabular}{l}
In an equilateral triangle \(A B C, D\) is a point on the side \(B C\) such that
\[
\mathrm{BD}=\mathrm{BC} / 3
\] \\
Prove that \(9 A D^{2}=7 A B^{2}\)
\end{tabular} & & \\
\hline 32. & In the figure, two equal circles, with centres O and \(\mathrm{O}^{\prime}\), touch each other A at X . OO' produced meets the circle with centre \(\mathrm{O}^{\prime}\) at A . AC is tangent to the circle with centre O , at the point C . O'D is perpendicular to \(A C\). Find the value of DO'/ CO. & & 3 \\
\hline 33. & In Figure, find the area of the shaded region. [Use \(\pi=3.14]\) & & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & Section V & & \\
\hline 34. & 2 men and 5 boys can finish a piece of wo and 6 boys can finish it in 3 days. Find the alone to finish the work and that taken by work. & in 4 days, while 3 men me taken by one man e boy alone to finish the & 5 \\
\hline 35. & \begin{tabular}{l}
A parachutist is descending vertically and elevation of \(45^{\circ}\) and \(60^{\circ}\) at two observing each other on the left side of himself. Find which he falls and the distance of the poin ground from the just observation point. \\
OR \\
A man sitting at a height of 20 m on a tall the middle of a river observes two poles di other on the two banks of the river and in the angles of depression of the feet of the which the man is sitting on the tree on eith \(60^{\circ}\) and \(30^{\circ}\) respectively. Find the width of
\end{tabular} & akes angles of ints 100 m apart from e maximum height from where he falls on the e on a small island in ctly opposite to each with the foot of tree. If les from a point at side of the river are he river. & 5 \\
\hline 36. & In Figure, arcs are drawn by taking vertices \(A, B\) and \(C\) of an equilateral triangle \(A B C\) of side 14 cm as centres to intersect the sides \(B C, C A\) and \(A B\) at \(B Z\) their respective mid-points \(\mathrm{D}, \mathrm{E}\) and F . Find the area of the shaded region. [Use \(\pi=22 / 7\) and \(\sqrt{ } 3=1.73\)] & & 5 \\
\hline
\end{tabular}

\section*{KENDRIYA VIDYALAYA SANGATHAN}

\section*{Ahmedabad Region}

\section*{I Pre-Board Examination 20-21}

Mathematics

\section*{Class X}

\section*{ANSWER KEY}
\begin{tabular}{|c|c|c|}
\hline Question No. & & Marks \\
\hline 1. & LCM is 720. OR 0.00608 & 1 \\
\hline 2. & \(x=3 \sqrt{2}\) or \(x=-2 \sqrt{2}\) & 1 \\
\hline 3. & \(\mathrm{k} \neq-4\), all other value except -4 & 1 \\
\hline 4. & \(x+y=50 \ldots \ldots \ldots . .(i) 0.5 x+0.25 y=19.50 \ldots \ldots \ldots . .(i i)\) & 1 \\
\hline 5. & Real and unequal & 1 \\
\hline 6. & \(\mathrm{k}=4\) OR k=3 & 1 \\
\hline 7. & 15th term of the AP \(=310\) OR Common difference \(=4\) & 1 \\
\hline 8. & IV quadrant P (16/5, 11/5) OR the value of \(p=3\). & 1 \\
\hline 9. & -11/4 & 1 \\
\hline 10. & value \(=19 / 20\) & 1 \\
\hline 11. & 7.2 cm & 1 \\
\hline 12. & \(\angle \mathrm{BAT}=50^{\circ}\) & 1 \\
\hline 13. & \(\mathrm{AP}=7.5 \mathrm{~cm} \quad \mathrm{OR} \quad \mathrm{BC}=\mathrm{BQ}+\mathrm{QC}=3+7=10 \mathrm{~cm}\) & 1 \\
\hline 14. & 4.8 cm & 1 \\
\hline 15. & 77/8 sq.cm & 1 \\
\hline 16. & distance \(=\) Perimeter \(=2 \mathrm{mr}=2 \times 22 / 7 \times 35 / 2 \mathrm{~cm}=110 \mathrm{~cm}\) or 1.1 m & 1 \\
\hline 17. & \begin{tabular}{l}
i. (d) \(4 x^{3}-100 x^{2}+625 x\) \\
ii. (c) 0.5 inch \\
iii. (b)576 sq. Inch \\
iv. (a) \(24 \times 24 \times 0.5\) \\
v. (d) Three
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 18. & \begin{tabular}{l}
i.(a) 18 \\
ii.(b) 168 \\
iii.(b) No, the common difference between each row is not the same \\
iv.(d) \(1440 \times \sqrt{3}\) cubic cm \\
v.(a) \(\sqrt{ } 3 \times 12 \times 24+30 \times 24\) Sq.cm
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline 19 & \begin{tabular}{l}
i.(b)Seema travel less distance than Aditya to reach to their hometown \\
ii.(c)(2.5, 4.5) \\
iii. (c) isosceles right angled triangle. \\
iv.(b) \(4 \sqrt{ } 2\) unit \\
v. (a) 17 sq. Unit
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline 20 & \begin{tabular}{l}
i.(c) \(\triangle A B M \sim \triangle C D M\) \\
ii.(c)AA criterion \\
iii.(d)3 m \\
iv. (b) 18 cm \\
v.(d) \(30^{\circ}\)
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline 21 & \begin{tabular}{l}
LCM = product of greatest power of each prime factor involved in the numbers
\[
26 \times 3 \times 5=960 \mathrm{~cm}=9.6 \mathrm{~m}
\] \\
Hence, the required length of cloth is 9.6 m .
\end{tabular} & \begin{tabular}{l}
1 \\
1
\end{tabular} \\
\hline 22 & \[
\begin{aligned}
& k \Rightarrow \alpha+\beta=\alpha \beta \\
& \Rightarrow-2=3 k \\
& \Rightarrow k=-2 / 3
\end{aligned}
\] & \[
\begin{gathered}
\hline 1 \\
1 / 2 \\
1 / 2
\end{gathered}
\] \\
\hline 23 & . P lies on the \(y\)-axis; so, its abscissa is 0 . the \(x\)-axis divides the line \(A B\) in the ratio \(2: 3\) at the point \(P\). the point of intersection of \(A B\) and the \(x\)-axis is \(P(0,1)\). OR & 1
1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
We know that the diagonals of a parallelogram bisect each other. \\
Mid-point of \(\mathrm{AC}=(2,1)\) \\
Mid-point Of BD \(=(2,1)\)
\end{tabular} & \[
\begin{gathered}
1 \\
1 / 2 \\
1 / 2
\end{gathered}
\] \\
\hline 24 & & 1
\(11 / 2\)
\(1 / 2\)

\(1 / 2\)
1
1
\(1 / 2\)
\(1 / 2\) \\
\hline 25 & \begin{tabular}{l}
\(\angle O C A=90^{\circ}\)..[Tangent is \(\perp\) to the radius through the point of contact \(\therefore \mathrm{OC} \perp \mathrm{AB}\) \\
\(A C=1 / 2(A B) \ldots[\perp\) from the centre bisects the chord
\[
\Rightarrow A C=1 / 2(48)=24 \mathrm{~cm}
\] \\
In rt. \(\triangle \mathrm{OCA}, \mathrm{OA}^{2}=\mathrm{OC}^{2}+\mathrm{AC}^{2} \ldots\) [Pythagoras' theorem
\[
\begin{aligned}
& r^{2}=(7)^{2}+(24)^{2} \\
& =49+576=625 \\
& \therefore r=\sqrt{ } 625=25 \mathrm{~cm}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\)
\[
1 / 2
\]
\end{tabular} \\
\hline 26 & Correct construction & 2 \\
\hline 27 & Correct proof step by step & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 28 & \begin{tabular}{l}
Speed of the boat in still water \(8 \mathrm{~km} / \mathrm{hr}\). \\
Let the speed of the stream be \(x \mathrm{~km} / \mathrm{hr}\). Speed upstream \(8 x \mathrm{~km} / \mathrm{hr}\). \\
Speed downstream 8xkm/hr. \\
Speed downstream 8xkm/hr. \\
Time taken to go 22 km downstream \(=22 /(8+\mathrm{x}) \mathrm{hr}\) \\
Time taken to go 15 km upstream= 15/(8-x)hr \\
According to the question:22 /(8 + x) hr \(+15 /(8-x) \mathrm{hr}=5\)
\[
\begin{aligned}
& 5 x^{2}-7 x-24=0 \\
& x=3
\end{aligned}
\] \\
OR \\
Let the marks obtained by \(P\) in mathematics and science be \(x\) and \(28-x\), respectively. According to the given condition,
\[
\begin{aligned}
& (x+3)(28-x-4)=180 \\
& x=12 \text { or } x 9
\end{aligned}
\] \\
Hence, he obtained 12 marks in mathematics and 16 marks in science or 9 marks in mathematics and 19 marks in science
\end{tabular} & \begin{tabular}{l}
1/2 \\
1/2 \\
\(1 / 2\) \\
1 \\
\(1 / 2\) \\
1 \\
1 \\
1
\end{tabular} \\
\hline 29 & \[
\begin{aligned}
& \text { Taking LHS }=(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A) \\
& =\left(1+\frac{\cos A}{\sin A}-\frac{1}{\sin A}\right)\left(1+\frac{\sin A}{\cos A}+\frac{1}{\cos A}\right)=\left(\frac{\sin A+\cos A-1}{\sin A}\right)\left(\frac{\cos A+\sin A+1}{\cos A}\right) \\
& =\frac{(\sin A+\cos A)^{2}-1}{\sin A \cos A}=\frac{\sin ^{2} A+\cos ^{2} A+2 \sin A \cos A-1}{\sin A \cos A} \\
& =\frac{1+2 \sin A \cos A-1}{\sin A \cos A}=\frac{2 \sin A \cos A}{\sin A \cos A}=2
\end{aligned}
\] & 1
1
1 \\
\hline 30 & \begin{tabular}{l}
Correct diagram \\
Finding angle of elevation \\
Finding height of kite
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline 31 & \begin{tabular}{l}
AD is median, \(\mathrm{So} \mathrm{BD}=\mathrm{DC}\).
\[
\begin{aligned}
& \mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BE}^{2} \\
& \mathrm{AC}_{2}=\mathrm{AE}^{2}+\mathrm{EC}^{2}
\end{aligned}
\] \\
Adding both,
\[
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AE}^{2}+\mathrm{BE}^{2}+\mathrm{CE}^{2} \\
& =2\left(\mathrm{AD}^{2}-\mathrm{ED}^{2}\right)+(\mathrm{BD}-\mathrm{ED})^{2}+(\mathrm{DC}+\mathrm{ED})^{2} \\
& =2 \mathrm{AD}^{2}-2 \mathrm{ED}^{2}+\mathrm{BD}^{2}+\mathrm{ED}^{2}-2 \mathrm{BD} \cdot \mathrm{ED}+\mathrm{DC}^{2}+\mathrm{ED}^{2}+2 \mathrm{CD} \cdot \mathrm{ED} \\
& =2 \mathrm{AD}^{2}+\mathrm{BD}^{2}+\mathrm{CD}^{2} \\
& =2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\) \\
1 \\
\(1 / 2\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline 32 & \begin{tabular}{l}
\(\angle A C O=90^{\circ} \ldots\) [Tangent is \(\perp\) to the radius through the point of contact In \(\triangle A O^{\prime} D\) and \(\triangle A O C\) \\
\(\angle O^{\prime} A D=\angle O A C\)...(Common \\
\(\therefore \angle A D O=\angle A C O \quad .\). [Each \(90^{\circ}\) \\
\(\therefore \triangle A O O^{\prime} \sim \therefore A O C \ldots\) (AA similarity \\
\(\mathrm{AO}^{\prime} \mathrm{AO}=\mathrm{DO}^{\prime} / \mathrm{CO} \ldots\)... [In \(\sim\) As corresponding sides are proportional
\[
\begin{aligned}
& \mathrm{r} / 3 \mathrm{r}=\mathrm{DO}^{\prime} / \mathrm{CO} \ldots\left[\text { Let } A O^{\prime}=\mathrm{O}^{\prime} \mathrm{X}=\mathrm{OX}=\mathrm{r} \Rightarrow \mathrm{AO}=\mathrm{r}+\mathrm{r}+\mathrm{r}=3 \mathrm{r}\right. \\
& \therefore \mathrm{DO} / \mathrm{CO}=1 / 3
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
\(1 / 2\) \\
1 \\
1 \\
\(1 / 2\)
\end{tabular} \\
\hline 33 & \begin{tabular}{l}
\[
\begin{aligned}
& r=\frac{d}{2}=\frac{4}{2}=2 \mathrm{~cm} \\
& \ldots\left[\because d=\frac{14}{2}-3=4\right.
\end{aligned}
\] \\
Let the side of small square
\[
a=4 \mathrm{~cm} \ldots\left[\because d=\frac{14}{2}-3=4\right.
\]
\[
\begin{aligned}
\text { Area of square } \mathrm{ABCD} & =(\text { Side })^{2}=(\mathrm{A})^{2} \\
& =(14)^{2}=196 \mathrm{~cm}^{2}
\end{aligned}
\] \\
Area of small square \(\mathrm{PQRS}=(a)^{2}=(4)^{2}=16 \mathrm{~cm}^{2}\)
\[
\begin{aligned}
\text { Area of } 4 \text { semicircles } & =4 \times \frac{1}{2} \pi r^{2} \\
& =\left[4 \times 1 / 2 \times 3.14(2)^{2}\right] \mathrm{cm}^{2} \\
& =25.12 \mathrm{~cm}^{2}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
\(1 / 2\) \\
\(1 / 2\) \\
1 \\
\(1 / 2\) \\
\(1 / 2\)
\end{tabular} \\
\hline 34 & \begin{tabular}{l}
.Let us suppose that one man alone can finish the work in x days and one boy alone can finish it in \(y\) days. \\
\(\therefore\) One man's one day's work \(=1 / x\) \\
And, one boy's one day's work \(=1 / y\) \\
2 men and 5 boys can finish the work in 4 days. \\
\(\therefore\) (2 men's one day's work) + (5 boys' one day's work) \(=1 / 4\) \\
\(\Rightarrow 2 / x+5 / y=1 / 4\)
\end{tabular} & 1/2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
\[
\Rightarrow 2 u+5 v=1 / 4 \ldots \ldots . \text { (i) Here, } 1 / x=u \text { and } 1 / y=v
\] \\
Again, 3 men and 6 boys can finish the work in 3days. \\
\(\therefore(3\) men's one day's work) \(+(6\) boys' one day's work \()=1 / 3\)
\[
3 u+6 v=1 / 3
\] \\
one man alone can finish the work is 18days and one boy alone can finish the work in 36 days.
\end{tabular} & \begin{tabular}{l}
\[
1 / 2
\] \\
1/2
\[
1 / 2
\]
\end{tabular} \\
\hline 35 & \begin{tabular}{l}
Correct diagram \\
Finding result step by step
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 4
\end{aligned}
\] \\
\hline 36 & \begin{tabular}{l}
Let \(\theta=60^{\circ}, \quad r=\frac{14}{2}=7 \mathrm{~cm}\) \\
Area of shaded region
\[
\begin{aligned}
= & \operatorname{ar}(\Delta \mathrm{ABC})-3 \text { (ar of sector) } \\
= & \frac{\sqrt{3}}{4}(\text { side })^{2}-3 \cdot \frac{\theta}{360} \pi r^{2} \\
& \ldots\left[\text { Area of equilateral } \Delta=\frac{\sqrt{3}}{4} \text { side }^{2}\right. \\
= & \frac{1.73}{4} \times 14 \times 14-3 \times \frac{60}{360} \times \frac{22}{7} \times 7 \times 7 \\
= & 84.77-77=7.77 \mathrm{~cm}^{2}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
1 \\
1 \\
2 \\
1
\end{tabular} \\
\hline
\end{tabular}```

[^0]: The lengths of the two tangents from an external point to a circle are equal.
 $\Rightarrow A P=P B$

